Boost.MultiArray is composed of several components.
The MultiArray concept defines a generic interface to multidimensional
containers.
multi_array
is a general purpose container class
that models MultiArray. multi_array_ref
and const_multi_array_ref
are adapter
classes. Using them,
you can manipulate any block of contiguous data as though it were a
multi_array
.
const_multi_array_ref
differs from
multi_array_ref
in that its elements cannot
be modified through its interface. Finally, several auxiliary classes are used
to create and specialize arrays and some global objects are defined as
part of the library interface.
To use Boost.MultiArray, you must include the header
boost/multi_array.hpp
in your source. This file
brings the following declarations into scope:
namespace boost { namespace multi_array_types { typedef *unspecified* index; typedef *unspecified* size_type; typedef *unspecified* difference_type; typedef *unspecified* index_range; typedef *unspecified* extent_range; typedef *unspecified* index_gen; typedef *unspecified* extent_gen; } template <typename ValueType, std::size_t NumDims, typename Allocator = std::allocator<ValueType> > class multi_array; template <typename ValueType, std::size_t NumDims> class multi_array_ref; template <typename ValueType, std::size_t NumDims> class const_multi_array_ref; multi_array_types::extent_gen extents; multi_array_types::index_gen indices; template <typename Array, int N> class subarray_gen; template <typename Array, int N> class const_subarray_gen; template <typename Array, int N> class array_view_gen; template <typename Array, int N> class const_array_view_gen; class c_storage_order; class fortran_storage_order; template <std::size_t NumDims> class general_storage_order; }
The MultiArray concept defines an interface to hierarchically nested containers. It specifies operations for accessing elements, traversing containers, and creating views of array data. MultiArray defines a flexible memory model that accomodates a variety of data layouts.
At each level (or dimension) of a MultiArray's container hierarchy lie a set of ordered containers, each of which contains the same number and type of values. The depth of this container hierarchy is the MultiArray's dimensionality. MultiArray is recursively defined; the containers at each level of the container hierarchy model MultiArray as well. While each dimension of a MultiArray has its own size, the list of sizes for all dimensions defines the shape of the entire MultiArray. At the base of this hierarchy lie 1-dimensional MultiArrays. Their values are the contained objects of interest and not part of the container hierarchy. These are the MultiArray's elements.
Like other container concepts, MultiArray exports iterators to traverse its values. In addition, values can be addressed directly using the familiar bracket notation.
MultiArray also specifies
routines for creating
specialized views. A view lets you treat a
subset of the underlying
elements in a MultiArray as though it were a separate
MultiArray. Since a view refers to the same underlying elements,
changes made to a view's elements will be reflected in the original
MultiArray. For
example, given a 3-dimensional "cube" of elements, a 2-dimensional
slice can be viewed as if it were an independent
MultiArray.
Views are created using index_gen
and
index_range
objects.
index_range
s denote elements from a certain
dimension that are to be included in a
view. index_gen
aggregates range data and performs
bookkeeping to determine the view type to be returned.
MultiArray's operator[]
must be passed the result
of N
chained calls to
index_gen::operator[]
, i.e.
indices[a0][a1]...[aN];
where N
is the
MultiArray's dimensionality and
indices
an object of type index_gen
.
The view type is dependent upon the number of degenerate dimensions
specified to index_gen
. A degenerate dimension
occurs when a single-index is specified to
index_gen
for a certain dimension. For example, if
indices
is an object of type
index_gen
, then the following example:
indices[index_range(0,5)][2][index_range(0,4)];
has a degenerate second dimension. The view generated from the above
specification will have 2 dimensions with shape 5 x 4
.
If the "2
" above were replaced with
another index_range
object, for example:
indices[index_range(0,5)][index_range(0,2)][index_range(0,4)];
then the view would have 3 dimensions.
MultiArray exports
information regarding the memory
layout of its contained elements. Its memory model for elements is
completely defined by 4 properties: the origin, shape, index bases,
and strides. The origin is the address in memory of the element
accessed as a[0][0]...[0]
, where
a
is a MultiArray. The shape is a list of numbers
specifying the size of containers at each dimension. For example, the
first extent is the size of the outermost container, the second extent
is the size of its subcontainers, and so on. The index bases are a
list of signed values specifying the index of the first value in a
container. All containers at the same dimension share the same index
base. Note that since positive index bases are
possible, the origin need not exist in order to determine the location
in memory of the MultiArray's elements.
The strides determine how index values are mapped to memory offsets.
They accomodate a
number of possible element layouts. For example, the elements of a 2
dimensional array can be stored by row (i.e., the elements of each row
are stored contiguously) or by column (i.e., the elements of each
column are stored contiguously).
Two concept checking classes for the MultiArray concepts
(ConstMultiArrayConcept
and
MutableMultiArrayConcept
) are in the namespace
boost::multi_array_concepts
in
<boost/multi_array/concept_checks.hpp>
.
What follows are the descriptions of symbols that will be used to describe the MultiArray interface.
Table 1. Notation
A | A type that is a model of MultiArray |
a,b | Objects of type A |
NumDims | The numeric dimension parameter associated with
A . |
Dims | Some numeric dimension parameter such that
0<Dims<NumDims .
|
indices | An object created by some number of chained calls
to index_gen::operator[](index_range) . |
index_list | An object whose type models Collection |
idx | A signed integral value. |
tmp | An object of type
boost::array<index,NumDims> |
Table 2. Associated Types
Type | Description |
---|---|
value_type | This is the value type of the container.
If NumDims == 1 , then this is
element . Otherwise, this is the value type of the
immediately nested containers.
|
reference
|
This is the reference type of the contained value.
If NumDims == 1 , then this is
element& . Otherwise, this is the same type as
template subarray<NumDims-1>::type .
|
const_reference
|
This is the const reference type of the contained value.
If NumDims == 1 , then this is
const element& . Otherwise, this is the same
type as
template const_subarray<NumDims-1>::type .
|
size_type
| This is an unsigned integral type. It is primarily used to specify array shape. |
difference_type
|
This is a signed integral type used to represent the distance between two
iterators. It is the same type as
std::iterator_traits<iterator>::difference_type .
|
iterator |
This is an iterator over the values of A .
If NumDims == 1 , then it models
Random Access Iterator .
Otherwise it models
Random Access Traversal Iterator,
Readable Iterator,
Writable Iterator, and
Output Iterator .
|
const_iterator
|
This is the const iterator over the values of A .
|
reverse_iterator
|
This is the reversed iterator, used to iterate backwards over the values of
A .
|
const_reverse_iterator
|
This is the reversed const iterator.
A .
|
element
|
This is the type of objects stored at the base of the
hierarchy of MultiArrays. It is the same as
template subarray<1>::value_type
|
index
|
This is a signed integral type used for indexing into A . It
is also used to represent strides and index bases.
|
index_gen
|
This type is used to create a tuple of index_range s
passed to operator[] to create
an array_view<Dims>::type object.
|
index_range
|
This type specifies a range of indices over some dimension of a
MultiArray. This range will be visible through an
array_view<Dims>::type object.
|
template subarray<Dims>::type
|
This is subarray type with Dims dimensions.
It is the reference type of the (NumDims - Dims)
dimension of A and also models
MultiArray.
|
template const_subarray<Dims>::type
| This is the const subarray type. |
template array_view<Dims>::type
|
This is the view type with Dims dimensions. It is
returned by calling operator[]( .
It models MultiArray.
|
template
const_array_view<Dims>::type
|
This is the const view type with Dims dimensions.
|
Table 3. Valid Expressions
Expression | Return type | Semantics |
---|---|---|
A::dimensionality | size_type | This compile-time constant represents the number of
dimensions of the array (note that
A::dimensionality == NumDims ). |
a.shape() | const size_type* |
This returns a list of NumDims elements specifying the
extent of each array dimension.
|
a.strides() | const index* |
This returns a list of NumDims elements specifying the
stride associated with each array dimension. When accessing values,
strides is used to calculate an element's location in memory.
|
a.index_bases() | const index* |
This returns a list of NumDims elements specifying the
numeric index of the first element for each array dimension.
|
a.origin() |
element* if a is mutable,
const element* otherwise.
|
This returns the address of the element accessed by the expression
a[0][0]...[0]. . If the index bases are positive,
this element won't exist, but the address can still be used to locate
a valid element given its indices.
|
a.num_dimensions() | size_type | This returns the number of dimensions of the array
(note that a.num_dimensions() == NumDims ). |
a.num_elements() | size_type | This returns the number of elements contained
in the array. It is equivalent to the following code:
std::accumulate(a.shape(),a.shape+a.num_dimensions(), size_type(1),std::multiplies<size_type>()); |
a.size() | size_type |
This returns the number of values contained in
a . It is equivalent to a.shape()[0];
|
a(index_list) |
element& ; if a is mutable,
const element& otherwise.
|
This expression accesses a specific element of
a .index_list is the unique set
of indices that address the element returned. It is
equivalent to the following code (disregarding intermediate temporaries):
// multiply indices by strides std::transform(index_list.begin(), index_list.end(), a.strides(), tmp.begin(), std::multiplies<index>()), // add the sum of the products to the origin *std::accumulate(tmp.begin(), tmp.end(), a.origin()); |
a.begin() |
iterator if a is mutable,
const_iterator otherwise.
| This returns an iterator pointing to the beginning of
a . |
a.end() |
iterator if a is mutable,
const_iterator otherwise.
| This returns an iterator pointing to the end of
a . |
a.rbegin() |
reverse_iterator if a is mutable,
const_reverse_iterator otherwise.
| This returns a reverse iterator pointing to the
beginning of a reversed.
|
a.rend() |
reverse_iterator if a is mutable,
const_reverse_iterator otherwise.
|
This returns a reverse iterator pointing to the end of a
reversed.
|
a[idx] |
reference if a is mutable,
const_reference otherwise.
|
This returns a reference type that is bound to the index
idx value of a . Note that if
i is the index base for this dimension, the above
expression returns the (idx-i) th element (counting
from zero). The expression is equivalent to
*(a.begin()+idx-a.index_bases()[0]); .
|
a[indices] |
array_view<Dims>::type if
a is mutable,
const_array_view<Dims>::type otherwise.
|
This expression generates a view of the array determined by the
index_range and index values
used to construct indices .
|
a == b | bool | This performs a lexicographical comparison of the
values of a and b . The element
type must model EqualityComparable for this
expression to be valid. |
a < b | bool | This performs a lexicographical comparison of the
values of a and b . The element
type must model LessThanComparable for this
expression to be valid. |
a <= b | bool | This performs a lexicographical comparison of the
values of a and b . The element
type must model EqualityComparable and
LessThanComparable for this
expression to be valid. |
a > b | bool | This performs a lexicographical comparison of the
values of a and b . The element
type must model EqualityComparable and
LessThanComparable for this
expression to be valid. |
a >= b | bool | This performs a lexicographical comparison of the
values of a and b . The element
type must model LessThanComparable for this
expression to be valid. |
begin()
and end()
execute in amortized
constant time.
size()
executes in at most linear time in the
MultiArray's size.
Table 4. Invariants
Valid range | [a.begin(),a.end()) is a valid range.
|
Range size |
a.size() == std::distance(a.begin(),a.end()); .
|
Completeness |
Iteration through the range
[a.begin(),a.end()) will traverse across every
value_type of a .
|
Accessor Equivalence |
Calling a[a1][a2]...[aN] where N==NumDims
yields the same result as calling
a(index_list) , where index_list
is a Collection containing the values a1...aN .
|
The following MultiArray associated types define the interface for creating views of existing MultiArrays. Their interfaces and roles in the concept are described below.
index_range
objects represent half-open
strided intervals. They are aggregated (using an
index_gen
object) and passed to
a MultiArray's operator[]
to create an array view. When creating a view,
each index_range
denotes a range of
valid indices along one dimension of a MultiArray.
Elements that are accessed through the set of ranges specified will be
included in the constructed view. In some cases, an
index_range
is created without specifying start
or finish values. In those cases, the object is interpreted to
start at the beginning of a MultiArray dimension
and end at its end.
index_range
objects can be constructed and modified
several ways in order to allow convenient and clear expression of a
range of indices. To specify ranges, index_range
supports a set of constructors, mutating member functions, and a novel
specification involving inequality operators. Using inequality
operators, a half open range [5,10) can be specified as follows:
5 <= index_range() < 10;
or
4 < index_range() <= 9;
and so on.
The following describes the
index_range
interface.
Table 6. Associated Types
Type | Description |
---|---|
index | This is a signed integral type. It is used to specify the start, finish, and stride values. |
size_type | This is an unsigned integral type. It is used to
report the size of the range an index_range
represents. |
Table 7. Valid Expressions
Expression | Return type | Semantics |
---|---|---|
index_range(idx1,idx2,idx3) | index_range | This constructs an index_range
representing the interval [idx1,idx2)
with stride idx3 . |
index_range(idx1,idx2) | index_range | This constructs an index_range
representing the interval [idx1,idx2)
with unit stride. It is equivalent to
index_range(idx1,idx2,1) . |
index_range() | index_range | This construct an index_range
with unspecified start and finish values. |
i.start(idx1) | index& | This sets the start index of i to
idx . |
i.finish(idx) | index& | This sets the finish index of i to
idx . |
i.stride(idx) | index& | This sets the stride length of i to
idx . |
i.start() | index | This returns the start index of i . |
i.finish() | index | This returns the finish index of i . |
i.stride() | index | This returns the stride length of i . |
i.get_start(idx) | index | If i specifies a start
value, this is equivalent to i.start() . Otherwise it
returns idx . |
i.get_finish(idx) | index | If i specifies a finish
value, this is equivalent to i.finish() . Otherwise it
returns idx . |
i.size(idx) | size_type | If i specifies a both finish and
start values, this is equivalent to
(i.finish()-i.start())/i.stride() . Otherwise it
returns idx . |
i < idx | index | This is another syntax for specifying the finish
value. This notation does not include
idx in the range of valid indices. It is equivalent to
index_range(r.start(), idx, r.stride()) |
i <= idx | index | This is another syntax for specifying the finish
value. This notation includes
idx in the range of valid indices. It is equivalent to
index_range(r.start(), idx + 1, r.stride()) |
idx < i | index | This is another syntax for specifying the start
value. This notation does not include
idx in the range of valid indices. It is equivalent to
index_range(idx + 1, i.finish(), i.stride()) . |
idx <= i | index | This is another syntax for specifying the start
value. This notation includes
idx1 in the range of valid indices. It is equivalent to
index_range(idx, i.finish(), i.stride()) . |
i + idx | index | This expression shifts the start and finish values
of i up by idx . It is equivalent to
index_range(r.start()+idx1, r.finish()+idx, r.stride()) |
i - idx | index | This expression shifts the start and finish values
of i up by idx . It is equivalent to
index_range(r.start()-idx1, r.finish()-idx, r.stride()) |
index_gen
aggregates
index_range
objects in order to specify view
parameters. Chained calls to operator[]
store
range and dimension information used to
instantiate a new view into a MultiArray.
Table 8. Notation
Dims,Ranges | Unsigned integral values. |
x | An object of type
template gen_type<Dims,Ranges>::type . |
i | An object of type
index_range . |
idx | Objects of type index . |
Table 9. Associated Types
Type | Description |
---|---|
index | This is a signed integral type. It is used to specify degenerate dimensions. |
size_type | This is an unsigned integral type. It is used to
report the size of the range an index_range
represents. |
template gen_type::<Dims,Ranges>::type | This type generator names the result of
Dims chained calls to
index_gen::operator[] . The
Ranges parameter is determined by the number of
degenerate ranges specified (i.e. calls to
operator[](index) ). Note that
index_gen and
gen_type<0,0>::type are the same type. |
Table 10. Valid Expressions
Expression | Return type | Semantics |
---|---|---|
index_gen() | gen_type<0,0>::type | This constructs an index_gen
object. This object can then be used to generate tuples of
index_range values. |
x[i] | gen_type<Dims+1,Ranges+1>::type
| Returns a new object containing all previous
index_range objects in addition to
i. Chained calls to
operator[] are the means by which
index_range objects are aggregated. |
x[idx] | gen_type<Dims,Ranges+1>::type
| Returns a new object containing all previous
index_range objects in addition to a degenerate
range, index_range(idx,idx). Note that this is NOT
equivalent to x[index_range(idx,idx)]. , which will
return an object of type
gen_type<Dims+1,Ranges+1>::type .
|
Boost.MultiArray defines an array class,
multi_array
, and two adapter classes,
multi_array_ref
and
const_multi_array_ref
. The three classes model
MultiArray and so they share a lot of functionality.
multi_array_ref
differs from
multi_array
in that the
multi_array
manages its own memory, while
multi_array_ref
is passed a block of memory that it
expects to be externally managed.
const_multi_array_ref
differs from
multi_array_ref
in that the underlying elements it
adapts cannot be modified through its interface, though some array
properties, including the array shape and index bases, can be altered.
Functionality the classes have in common is described
below.
Note: Preconditions, Effects, and Implementation. Throughout the following sections, small pieces of C++ code are used to specify constraints such as preconditions, effects, and postconditions. These do not necessarily describe the underlying implementation of array components; rather, they describe the expected input to and behavior of the specified operations. Failure to meet preconditions results in undefined behavior. Not all effects (i.e. copy constructors, etc.) must be mimicked exactly. The code snippets for effects intend to capture the essence of the described operation.
Queries.
element* data(); const element* data() const;
This returns a pointer to the beginning of the
contiguous block that contains the array's data. If all dimensions of
the array are 0-indexed and stored in ascending order, this is
equivalent to origin()
. Note that
const_multi_array_ref
only provides the const
version of this function.
element* origin(); const element* origin() const;
This returns the origin element of the
multi_array
. Note that
const_multi_array_ref
only provides the const
version of this function. (Required by MultiArray)
const index* index_bases();
This returns the index bases for the
multi_array
. (Required by MultiArray)
const index* strides();
This returns the strides for the
multi_array
. (Required by MultiArray)
const size_type* shape();
This returns the shape of the
multi_array
. (Required by MultiArray)
Comparators.
bool operator==(const *array-type*& rhs); bool operator!=(const *array-type*& rhs); bool operator<(const *array-type*& rhs); bool operator>(const *array-type*& rhs); bool operator>=(const *array-type*& rhs); bool operator<=(const *array-type*& rhs);
Each comparator executes a lexicographical compare over the value types of the two arrays. (Required by MultiArray)
Preconditions. element
must support the
comparator corresponding to that called on
multi_array
.
Complexity. O(num_elements()
).
Modifiers.
template <typename SizeList> void reshape(const SizeList& sizes)
This changes the shape of the multi_array
. The
number of elements and the index bases remain the same, but the number
of values at each level of the nested container hierarchy may
change.
SizeList
Requirements. SizeList
must model
Collection.
Preconditions.
std::accumulate(sizes.begin(),sizes.end(),size_type(1),std::times<size_type>()) == this->num_elements(); sizes.size() == NumDims;
Postconditions.
std::equal(sizes.begin(),sizes.end(),this->shape) == true;
template <typename BaseList> void reindex(const BaseList& values);
This changes the index bases of the multi_array
to
correspond to the the values in values
.
BaseList
Requirements. BaseList
must model
Collection.
Preconditions. values.size() == NumDims;
Postconditions. std::equal(values.begin(),values.end(),this->index_bases());
void reindex(index value);
This changes the index bases of all dimensions of the
multi_array
to value
.
Postconditions.
std::count_if(this->index_bases(),this->index_bases()+this->num_dimensions(), std::bind_2nd(std::equal_to<index>(),value)) == this->num_dimensions();
multi_array
is a multi-dimensional container that
supports random access iteration. Its number of dimensions is
fixed at compile time, but its shape and the number of elements it
contains are specified during its construction. The number of elements
will remain fixed for the duration of a
multi_array
's lifetime, but the shape of the container can
be changed. A multi_array
manages its data elements
using a replaceable allocator.
Model Of. MultiArray, CopyConstructible. Depending on the element type, it may also model EqualityComparable and LessThanComparable.
Synopsis.
namespace boost { template <typename ValueType, std::size_t NumDims, typename Allocator = std::allocator<ValueType> > class multi_array { public: // types: typedef ValueType element; typedef *unspecified* value_type; typedef *unspecified* reference; typedef *unspecified* const_reference; typedef *unspecified* difference_type; typedef *unspecified* iterator; typedef *unspecified* const_iterator; typedef *unspecified* reverse_iterator; typedef *unspecified* const_reverse_iterator; typedef multi_array_types::size_type size_type; typedef multi_array_types::index index; typedef multi_array_types::index_gen index_gen; typedef multi_array_types::index_range index_range; typedef multi_array_types::extent_gen extent_gen; typedef multi_array_types::extent_range extent_range; typedef *unspecified* storage_order_type; // template typedefs template <std::size_t Dims> struct subarray; template <std::size_t Dims> struct const_subarray; template <std::size_t Dims> struct array_view; template <std::size_t Dims> struct const_array_view; static const std::size_t dimensionality = NumDims; // constructors and destructors multi_array(); template <typename ExtentList> explicit multi_array(const ExtentList& sizes, const storage_order_type& store = c_storage_order(), const Allocator& alloc = Allocator()); explicit multi_array(const extents_tuple& ranges, const storage_order_type& store = c_storage_order(), const Allocator& alloc = Allocator()); multi_array(const multi_array& x); multi_array(const const_multi_array_ref<ValueType,NumDims>& x); multi_array(const const_subarray<NumDims>::type& x); multi_array(const const_array_view<NumDims>::type& x); multi_array(const multi_array_ref<ValueType,NumDims>& x); multi_array(const subarray<NumDims>::type& x); multi_array(const array_view<NumDims>::type& x); ~multi_array(); // modifiers multi_array& operator=(const multi_array& x); template <class Array> multi_array& operator=(const Array& x); // iterators: iterator begin(); iterator end(); const_iterator begin() const; const_iterator end() const; reverse_iterator rbegin(); reverse_iterator rend(); const_reverse_iterator rbegin() const; const_reverse_iterator rend() const; // capacity: size_type size() const; size_type num_elements() const; size_type num_dimensions() const; // element access: template <typename IndexList> element& operator()(const IndexList& indices); template <typename IndexList> const element& operator()(const IndexList& indices) const; reference operator[](index i); const_reference operator[](index i) const; array_view<Dims>::type operator[](const indices_tuple& r); const_array_view<Dims>::type operator[](const indices_tuple& r) const; // queries element* data(); const element* data() const; element* origin(); const element* origin() const; const size_type* shape() const; const index* strides() const; const index* index_bases() const; const storage_order_type& storage_order() const; // comparators bool operator==(const multi_array& rhs); bool operator!=(const multi_array& rhs); bool operator<(const multi_array& rhs); bool operator>(const multi_array& rhs); bool operator>=(const multi_array& rhs); bool operator<=(const multi_array& rhs); // modifiers: template <typename InputIterator> void assign(InputIterator begin, InputIterator end); template <typename SizeList> void reshape(const SizeList& sizes) template <typename BaseList> void reindex(const BaseList& values); void reindex(index value); template <typename ExtentList> multi_array& resize(const ExtentList& extents); multi_array& resize(extents_tuple& extents); };
Constructors.
template <typename ExtentList> explicit multi_array(const ExtentList& sizes, const storage_order_type& store = c_storage_order(), const Allocator& alloc = Allocator());
This constructs a multi_array
using the specified
parameters. sizes
specifies the shape of the
constructed multi_array
. store
specifies the storage order or layout in memory of the array
dimensions. alloc
is used to
allocate the contained elements.
ExtentList
Requirements.
ExtentList
must model Collection.
Preconditions. sizes.size() == NumDims;
explicit multi_array(extent_gen::gen_type<NumDims>::type ranges, const storage_order_type& store = c_storage_order(), const Allocator& alloc = Allocator());
This constructs a multi_array
using the specified
parameters. ranges
specifies the shape and
index bases of the constructed multi_array. It is the result of
NumDims
chained calls to
extent_gen::operator[]
. store
specifies the storage order or layout in memory of the array
dimensions. alloc
is the allocator used to
allocate the memory used to store multi_array
elements.
multi_array(const multi_array& x); multi_array(const const_multi_array_ref<ValueType,NumDims>& x); multi_array(const const_subarray<NumDims>::type& x); multi_array(const const_array_view<NumDims>::type& x); multi_array(const multi_array_ref<ValueType,NumDims>& x); multi_array(const subarray<NumDims>::type& x); multi_array(const array_view<NumDims>::type& x);
These constructors all constructs a multi_array
and
perform a deep copy of x
.
Complexity. This performs O(x.num_elements()
) calls to
element
's copy
constructor.
multi_array();
This constructs a multi_array
whose shape is (0,...,0) and contains no elements.
Note on Constructors.
The multi_array
construction expressions,
multi_array<int,3> A(boost::extents[5][4][3]);
and
boost::array<multi_array_base::index,3> my_extents = {{5, 4, 3}}; multi_array<int,3> A(my_extents);
are equivalent.
Modifiers.
multi_array& operator=(const multi_array& x); template <class Array> multi_array& operator=(const Array& x);
This performs an element-wise copy of x
into the current multi_array
.
Array
Requirements. Array
must model MultiArray.
Preconditions.
std::equal(this->shape(),this->shape()+this->num_dimensions(), x.shape());
Postconditions.
(*.this) == x;
Complexity. The assignment operators perform
O(x.num_elements()
) calls to element
's
copy constructor.
template <typename InputIterator> void assign(InputIterator begin, InputIterator end);
This copies the elements in the range
[begin,end)
into the array. It is equivalent to
std::copy(begin,end,this->data())
.
Preconditions. std::distance(begin,end) == this->num_elements();
Complexity.
The assign
member function performs
O(this->num_elements()
) calls to
ValueType
's copy constructor.
multi_array& resize(extent_gen::gen_type<NumDims>::type extents); template <typename ExtentList> multi_array& resize(const ExtentList& extents);
This function resizes an array to the shape specified by
extents
, which is either a generated list of
extents or a model of the Collection
concept. The
contents of the array are preserved whenever possible; if the new
array size is smaller, then some data will be lost. Any new elements
created by resizing the array are initialized with the
element
default constructor.
Queries.
storage_order_type& storage_order() const;
This query returns the storage order object associated with the
multi_array
in question. It can be used to construct a new array with the same storage order.
multi_array_ref
is a multi-dimensional container
adaptor. It provides the MultiArray interface over any contiguous
block of elements. multi_array_ref
exports the
same interface as multi_array
, with the exception
of the constructors.
Model Of.
multi_array_ref
models
MultiArray,
CopyConstructible.
and depending on the element type, it may also model
EqualityComparable and LessThanComparable.
Detailed descriptions are provided here only for operations that are
not described in the multi_array
reference.
Synopsis.
namespace boost { template <typename ValueType, std::size_t NumDims> class multi_array_ref { public: // types: typedef ValueType element; typedef *unspecified* value_type; typedef *unspecified* reference; typedef *unspecified* const_reference; typedef *unspecified* difference_type; typedef *unspecified* iterator; typedef *unspecified* const_iterator; typedef *unspecified* reverse_iterator; typedef *unspecified* const_reverse_iterator; typedef multi_array_types::size_type size_type; typedef multi_array_types::index index; typedef multi_array_types::index_gen index_gen; typedef multi_array_types::index_range index_range; typedef multi_array_types::extent_gen extent_gen; typedef multi_array_types::extent_range extent_range; typedef *unspecified* storage_order_type; // template typedefs template <std::size_t Dims> struct subarray; template <std::size_t Dims> struct const_subarray; template <std::size_t Dims> struct array_view; template <std::size_t Dims> struct const_array_view; static const std::size_t dimensionality = NumDims; // constructors and destructors template <typename ExtentList> explicit multi_array_ref(element* data, const ExtentList& sizes, const storage_order_type& store = c_storage_order()); explicit multi_array_ref(element* data, const extents_tuple& ranges, const storage_order_type& store = c_storage_order()); multi_array_ref(const multi_array_ref& x); ~multi_array_ref(); // modifiers multi_array_ref& operator=(const multi_array_ref& x); template <class Array> multi_array_ref& operator=(const Array& x); // iterators: iterator begin(); iterator end(); const_iterator begin() const; const_iterator end() const; reverse_iterator rbegin(); reverse_iterator rend(); const_reverse_iterator rbegin() const; const_reverse_iterator rend() const; // capacity: size_type size() const; size_type num_elements() const; size_type num_dimensions() const; // element access: template <typename IndexList> element& operator()(const IndexList& indices); template <typename IndexList> const element& operator()(const IndexList& indices) const; reference operator[](index i); const_reference operator[](index i) const; array_view<Dims>::type operator[](const indices_tuple& r); const_array_view<Dims>::type operator[](const indices_tuple& r) const; // queries element* data(); const element* data() const; element* origin(); const element* origin() const; const size_type* shape() const; const index* strides() const; const index* index_bases() const; const storage_order_type& storage_order() const; // comparators bool operator==(const multi_array_ref& rhs); bool operator!=(const multi_array_ref& rhs); bool operator<(const multi_array_ref& rhs); bool operator>(const multi_array_ref& rhs); bool operator>=(const multi_array_ref& rhs); bool operator<=(const multi_array_ref& rhs); // modifiers: template <typename InputIterator> void assign(InputIterator begin, InputIterator end); template <typename SizeList> void reshape(const SizeList& sizes) template <typename BaseList> void reindex(const BaseList& values); void reindex(index value); };
Constructors.
template <typename ExtentList> explicit multi_array_ref(element* data, const ExtentList& sizes, const storage_order& store = c_storage_order(), const Allocator& alloc = Allocator());
This constructs a multi_array_ref
using the specified
parameters. sizes
specifies the shape of the
constructed multi_array_ref
. store
specifies the storage order or layout in memory of the array
dimensions. alloc
is used to
allocate the contained elements.
ExtentList
Requirements.
ExtentList
must model Collection.
Preconditions. sizes.size() == NumDims;
explicit multi_array_ref(element* data, extent_gen::gen_type<NumDims>::type ranges, const storage_order& store = c_storage_order());
This constructs a multi_array_ref
using the specified
parameters. ranges
specifies the shape and
index bases of the constructed multi_array_ref. It is the result of
NumDims
chained calls to
extent_gen::operator[]
. store
specifies the storage order or layout in memory of the array
dimensions.
multi_array_ref(const multi_array_ref& x);
This constructs a shallow copy of x
.
Complexity. Constant time (for contrast, compare this to
the multi_array
class copy constructor.
Modifiers.
multi_array_ref& operator=(const multi_array_ref& x); template <class Array> multi_array_ref& operator=(const Array& x);
This performs an element-wise copy of x
into the current multi_array_ref
.
Array
Requirements. Array
must model MultiArray.
Preconditions.
std::equal(this->shape(),this->shape()+this->num_dimensions(), x.shape());
Postconditions.
(*.this) == x;
Complexity. The assignment operators perform
O(x.num_elements()
) calls to element
's
copy constructor.
const_multi_array_ref
is a multi-dimensional container
adaptor. It provides the MultiArray interface over any contiguous
block of elements. const_multi_array_ref
exports the
same interface as multi_array
, with the exception
of the constructors.
Model Of.
const_multi_array_ref
models
MultiArray,
CopyConstructible.
and depending on the element type, it may also model
EqualityComparable and LessThanComparable.
Detailed descriptions are provided here only for operations that are
not described in the multi_array
reference.
Synopsis.
namespace boost { template <typename ValueType, std::size_t NumDims, typename TPtr = const T*> class const_multi_array_ref { public: // types: typedef ValueType element; typedef *unspecified* value_type; typedef *unspecified* reference; typedef *unspecified* const_reference; typedef *unspecified* difference_type; typedef *unspecified* iterator; typedef *unspecified* const_iterator; typedef *unspecified* reverse_iterator; typedef *unspecified* const_reverse_iterator; typedef multi_array_types::size_type size_type; typedef multi_array_types::index index; typedef multi_array_types::index_gen index_gen; typedef multi_array_types::index_range index_range; typedef multi_array_types::extent_gen extent_gen; typedef multi_array_types::extent_range extent_range; typedef *unspecified* storage_order_type; // template typedefs template <std::size_t Dims> struct subarray; template <std::size_t Dims> struct const_subarray; template <std::size_t Dims> struct array_view; template <std::size_t Dims> struct const_array_view; // structors template <typename ExtentList> explicit const_multi_array_ref(TPtr data, const ExtentList& sizes, const storage_order_type& store = c_storage_order()); explicit const_multi_array_ref(TPtr data, const extents_tuple& ranges, const storage_order_type& store = c_storage_order()); const_multi_array_ref(const const_multi_array_ref& x); ~const_multi_array_ref(); // iterators: const_iterator begin() const; const_iterator end() const; const_reverse_iterator rbegin() const; const_reverse_iterator rend() const; // capacity: size_type size() const; size_type num_elements() const; size_type num_dimensions() const; // element access: template <typename IndexList> const element& operator()(const IndexList& indices) const; const_reference operator[](index i) const; const_array_view<Dims>::type operator[](const indices_tuple& r) const; // queries const element* data() const; const element* origin() const; const size_type* shape() const; const index* strides() const; const index* index_bases() const; const storage_order_type& storage_order() const; // comparators bool operator==(const const_multi_array_ref& rhs); bool operator!=(const const_multi_array_ref& rhs); bool operator<(const const_multi_array_ref& rhs); bool operator>(const const_multi_array_ref& rhs); bool operator>=(const const_multi_array_ref& rhs); bool operator<=(const const_multi_array_ref& rhs); // modifiers: template <typename SizeList> void reshape(const SizeList& sizes) template <typename BaseList> void reindex(const BaseList& values); void reindex(index value); };
Constructors.
template <typename ExtentList> explicit const_multi_array_ref(TPtr data, const ExtentList& sizes, const storage_order& store = c_storage_order());
This constructs a const_multi_array_ref
using the specified
parameters. sizes
specifies the shape of the
constructed const_multi_array_ref
. store
specifies the storage order or layout in memory of the array
dimensions.
ExtentList
Requirements.
ExtentList
must model Collection.
Preconditions. sizes.size() == NumDims;
explicit const_multi_array_ref(TPtr data, extent_gen::gen_type<NumDims>::type ranges, const storage_order& store = c_storage_order());
Effects.
This constructs a const_multi_array_ref
using the specified
parameters. ranges
specifies the shape and
index bases of the constructed const_multi_array_ref. It is the result of
NumDims
chained calls to
extent_gen::operator[]
. store
specifies the storage order or layout in memory of the array
dimensions.
const_multi_array_ref(const const_multi_array_ref& x);
Effects. This constructs a shallow copy of x
.
namespace multi_array_types { typedef *unspecified* index; typedef *unspecified* size_type; typedef *unspecified* difference_type; typedef *unspecified* index_range; typedef *unspecified* extent_range; typedef *unspecified* index_gen; typedef *unspecified* extent_gen; }
Namespace multi_array_types
defines types
associated with multi_array
,
multi_array_ref
, and
const_multi_array_ref
that are not
dependent upon template parameters. These types find common use with
all Boost.Multiarray components. They are defined
in a namespace from which they can be accessed conveniently.
With the exception of extent_gen
and
extent_range
, these types fulfill the roles of the
same name required by MultiArray and are described in its
concept definition. extent_gen
and
extent_range
are described below.
extent_range
objects define half open
intervals. They provide shape and index base information to
multi_array
, multi_array_ref
,
and const_multi_array_ref
constructors.
extent_range
s are passed in
aggregate to an array constructor (see
extent_gen
for more details).
Synopsis.
class extent_range { public: typedef multi_array_types::index index; typedef multi_array_types::size_type size_type; // Structors extent_range(index start, index finish); extent_range(index finish); ~extent_range(); // Queries index start(); index finish(); size_type size(); };
Model Of. DefaultConstructible,CopyConstructible
Methods and Types.
extent_range(index start, index finish)
This constructor defines the half open interval
[start,finish)
. The expression
finish
must be greater than start
.
extent_range(index finish)
This constructor defines the half open interval
[0,finish)
. The value of finish
must be positive.
index start()
This function returns the first index represented by the range
index finish()
This function returns the upper boundary value of the half-open interval. Note that the range does not include this value.
size_type size()
This function returns the size of the specified range. It is
equivalent to finish()-start()
.
The extent_gen
class defines an
interface for aggregating array shape and indexing information to be
passed to a multi_array
,
multi_array_ref
, or const_multi_array_ref
constructor. Its interface mimics
the syntax used to declare built-in array types
in C++. For example, while a 3-dimensional array of
int
values in C++ would be
declared as:
int A[3][4][5],
a similar multi_array
would be declared:
multi_array<int,3> A(extents[3][4][5]).
Synopsis.
template <std::size_t NumRanges> class *implementation_defined* { public: typedef multi_array_types::index index; typedef multi_array_types::size_type size_type; template <std::size_t NumRanges> class gen_type; gen_type<NumRanges+1>::type operator[](const range& a_range) const; gen_type<NumRanges+1>::type operator[](index idx) const; }; typedef *implementation_defined*<0> extent_gen;
Methods and Types.
template gen_type<Ranges>::type
This type generator is used to specify the result of
Ranges
chained calls to
extent_gen::operator[].
The types
extent_gen
and
gen_type<0>::type
are the same.
gen_type<NumRanges+1>::type
operator[](const extent_range& a_range) const;
This function returns a new object containing all previous
extent_range
objects in addition to
a_range.
extent_range
objects are aggregated by chained calls to
operator[]
.
gen_type<NumRanges+1>::type
operator[](index idx) const;
This function returns a new object containing all previous
extent_range
objects in addition to
extent_range(0,idx).
This function gives the array
constructors a similar syntax to traditional C multidimensional array
declaration.
For syntactic convenience, Boost.MultiArray defines two global objects as part of its interface. These objects play the role of object generators; expressions involving them create other objects of interest.
Under some circumstances, the two global objects may be
considered excessive overhead. Their construction can be prevented by
defining the preprocessor symbol
BOOST_MULTI_ARRAY_NO_GENERATORS
before including
boost/multi_array.hpp.
namespace boost { multi_array_base::extent_gen extents; }
Boost.MultiArray's array classes use the
extents
global object to specify
array shape during their construction.
For example,
a 3 by 3 by 3 multi_array
is constructed as follows:
multi_array<int,3> A(extents[3][3][3]);
The same array could also be created by explicitly declaring an extent_gen
object locally,, but the global object makes this declaration unnecessary.
namespace boost { multi_array_base::index_gen indices; }
The MultiArray concept specifies an
index_gen
associated type that is used to
create views.
indices
is a global object that serves the role of
index_gen
for all array components provided by this
library and their associated subarrays and views.
For example, using the indices
object,
a view of an array A
is constructed as follows:
A[indices[index_range(0,5)][2][index_range(2,4)]];
Boost.MultiArray provides traits classes, subarray_gen
,
const_subarray_gen
,
array_view_gen
,
and const_array_view_gen
, for naming of
array associated types within function templates.
In general this is no more convenient to use than the nested
type generators, but the library author found that some C++ compilers do not
properly handle templates nested within function template parameter types.
These generators constitute a workaround for this deficit.
The following code snippet illustrates
the correspondence between the array_view_gen
traits class and the array_view
type associated to
an array:
template <typename Array> void my_function() { typedef typename Array::template array_view<3>::type view1_t; typedef typename boost::array_view_gen<Array,3>::type view2_t; // ... }
In the above example, view1_t
and
view2_t
have the same type.
While a multidimensional array represents a hierarchy of containers of elements, at some point the elements must be laid out in memory. As a result, a single multidimensional array can be represented in memory more than one way.
For example, consider the two dimensional array shown below in matrix notation:
Here is how the above array is expressed in C++:
int a[3][4] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
This is an example of row-major storage, where elements of each row are stored contiguously. While C++ transparently handles accessing elements of an array, you can also manage the array and its indexing manually. One way that this may be expressed in memory is as follows:
int a[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; int s[] = { 4, 1 };
With the latter declaration of a
and
strides s
, element a(i,j)
of the array can be
accessed using the expression
*a+i*s[0]+j*s[1]
.
The same two dimensional array could be laid out by column as follows:
int a[] = { 0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11 }; int s[] = { 3, 1 };
Notice that the strides here are different. As a result, The expression given above to access values will work with this pair of data and strides as well.
In addition to dimension order, it is also possible to store any dimension in descending order. For example, returning to the first example, the first dimension of the example array, the rows, could be stored in reverse, resulting in the following:
int data[] = { 8, 9, 10, 11, 4, 5, 6, 7, 0, 1, 2, 3 }; int *a = data + 8; int s[] = { -4, 1 };
Note that in this example a
must be explicitly set
to the origin. In the previous examples, the
first element stored in memory was the origin; here this is no longer
the case.
Alternatively, the second dimension, or the columns, could be reversed and the rows stored in ascending order:
int data[] = { 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8 }; int *a = data + 3; int s[] = { 4, -1 };
Finally, both dimensions could be stored in descending order:
int data[] = {11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}; int *a = data + 11; int s[] = { -4, -1 };
All of the above arrays are equivalent. The expression
given above for a(i,j)
will yield the same value
regardless of the memory layout.
Boost.MultiArray arrays can be created with customized storage
parameters as described above. Thus, existing data can be adapted
(with multi_array_ref
or
const_multi_array_ref
) as suited to the array
abstraction. A common usage of this feature would be to wrap arrays
that must interoperate with Fortran routines so they can be
manipulated naturally at both the C++ and Fortran levels. The
following sections describe the Boost.MultiArray components used to
specify memory layout.
class c_storage_order { c_storage_order(); };
c_storage_order
is used to specify that an
array should store its elements using the same layout as that used by
primitive C++ multidimensional arrays, that is, from last dimension
to first. This is the default storage order for the arrays provided by
this library.
class fortran_storage_order { fortran_storage_order(); };
fortran_storage_order
is used to specify that
an array should store its elements using the same memory layout as a
Fortran multidimensional array would, that is, from first dimension to
last.
template <std::size_t NumDims> class general_storage_order { template <typename OrderingIter, typename AscendingIter> general_storage_order(OrderingIter ordering, AscendingIter ascending); };
general_storage_order
allows the user to
specify an arbitrary memory layout for the contents of an array. The
constructed object is passed to the array constructor in order to
specify storage order.
OrderingIter
and AscendingIter
must model the InputIterator
concept. Both
iterators must refer to a range of NumDims
elements. AscendingIter
points to objects
convertible to bool
. A value of
true
means that a dimension is stored in ascending
order while false
means that a dimension is stored
in descending order. OrderingIter
specifies the
order in which dimensions are stored.
By default, the array access methods operator()
and
operator[]
perform range
checking. If a supplied index is out of the range defined for an
array, an assertion will abort the program. To disable range
checking (for performance reasons in production releases), define
the BOOST_DISABLE_ASSERTS
preprocessor macro prior to
including multi_array.hpp in an application.