001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018 package org.apache.commons.net.util; 019 020 import java.io.UnsupportedEncodingException; 021 import java.math.BigInteger; 022 023 024 025 /** 026 * Provides Base64 encoding and decoding as defined by RFC 2045. 027 * 028 * <p> 029 * This class implements section <cite>6.8. Base64 Content-Transfer-Encoding</cite> from RFC 2045 <cite>Multipurpose 030 * Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies</cite> by Freed and Borenstein. 031 * </p> 032 * <p> 033 * The class can be parameterized in the following manner with various constructors: 034 * <ul> 035 * <li>URL-safe mode: Default off.</li> 036 * <li>Line length: Default 76. Line length that aren't multiples of 4 will still essentially end up being multiples of 037 * 4 in the encoded data. 038 * <li>Line separator: Default is CRLF ("\r\n")</li> 039 * </ul> 040 * </p> 041 * <p> 042 * Since this class operates directly on byte streams, and not character streams, it is hard-coded to only encode/decode 043 * character encodings which are compatible with the lower 127 ASCII chart (ISO-8859-1, Windows-1252, UTF-8, etc). 044 * </p> 045 * 046 * @see <a href="http://www.ietf.org/rfc/rfc2045.txt">RFC 2045</a> 047 * @author Apache Software Foundation 048 * @since 2.2 049 * @version $Id: Base64.java 1407341 2012-11-09 01:31:00Z ggregory $ 050 */ 051 public class Base64 { 052 private static final int DEFAULT_BUFFER_RESIZE_FACTOR = 2; 053 054 private static final int DEFAULT_BUFFER_SIZE = 8192; 055 056 /** 057 * Chunk size per RFC 2045 section 6.8. 058 * 059 * <p> 060 * The {@value} character limit does not count the trailing CRLF, but counts all other characters, including any 061 * equal signs. 062 * </p> 063 * 064 * @see <a href="http://www.ietf.org/rfc/rfc2045.txt">RFC 2045 section 6.8</a> 065 */ 066 static final int CHUNK_SIZE = 76; 067 068 /** 069 * Chunk separator per RFC 2045 section 2.1. 070 * 071 * @see <a href="http://www.ietf.org/rfc/rfc2045.txt">RFC 2045 section 2.1</a> 072 */ 073 private static final byte[] CHUNK_SEPARATOR = {'\r', '\n'}; 074 075 private static final byte[] EMPTY_BYTE_ARRAY = new byte[0]; 076 077 /** 078 * This array is a lookup table that translates 6-bit positive integer index values into their "Base64 Alphabet" 079 * equivalents as specified in Table 1 of RFC 2045. 080 * 081 * Thanks to "commons" project in ws.apache.org for this code. 082 * http://svn.apache.org/repos/asf/webservices/commons/trunk/modules/util/ 083 */ 084 private static final byte[] STANDARD_ENCODE_TABLE = { 085 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 086 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 087 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 088 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 089 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '/' 090 }; 091 092 /** 093 * This is a copy of the STANDARD_ENCODE_TABLE above, but with + and / 094 * changed to - and _ to make the encoded Base64 results more URL-SAFE. 095 * This table is only used when the Base64's mode is set to URL-SAFE. 096 */ 097 private static final byte[] URL_SAFE_ENCODE_TABLE = { 098 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 099 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 100 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 101 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 102 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '-', '_' 103 }; 104 105 /** 106 * Byte used to pad output. 107 */ 108 private static final byte PAD = '='; 109 110 /** 111 * This array is a lookup table that translates Unicode characters drawn from the "Base64 Alphabet" (as specified in 112 * Table 1 of RFC 2045) into their 6-bit positive integer equivalents. Characters that are not in the Base64 113 * alphabet but fall within the bounds of the array are translated to -1. 114 * 115 * Note: '+' and '-' both decode to 62. '/' and '_' both decode to 63. This means decoder seamlessly handles both 116 * URL_SAFE and STANDARD base64. (The encoder, on the other hand, needs to know ahead of time what to emit). 117 * 118 * Thanks to "commons" project in ws.apache.org for this code. 119 * http://svn.apache.org/repos/asf/webservices/commons/trunk/modules/util/ 120 */ 121 private static final byte[] DECODE_TABLE = { 122 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 123 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 124 -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, 62, -1, 63, 52, 53, 54, 125 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 126 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 127 24, 25, -1, -1, -1, -1, 63, -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 128 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51 129 }; 130 131 /** Mask used to extract 6 bits, used when encoding */ 132 private static final int MASK_6BITS = 0x3f; 133 134 /** Mask used to extract 8 bits, used in decoding base64 bytes */ 135 private static final int MASK_8BITS = 0xff; 136 137 // The static final fields above are used for the original static byte[] methods on Base64. 138 // The private member fields below are used with the new streaming approach, which requires 139 // some state be preserved between calls of encode() and decode(). 140 141 /** 142 * Encode table to use: either STANDARD or URL_SAFE. Note: the DECODE_TABLE above remains static because it is able 143 * to decode both STANDARD and URL_SAFE streams, but the encodeTable must be a member variable so we can switch 144 * between the two modes. 145 */ 146 private final byte[] encodeTable; 147 148 /** 149 * Line length for encoding. Not used when decoding. A value of zero or less implies no chunking of the base64 150 * encoded data. 151 */ 152 private final int lineLength; 153 154 /** 155 * Line separator for encoding. Not used when decoding. Only used if lineLength > 0. 156 */ 157 private final byte[] lineSeparator; 158 159 /** 160 * Convenience variable to help us determine when our buffer is going to run out of room and needs resizing. 161 * <code>decodeSize = 3 + lineSeparator.length;</code> 162 */ 163 private final int decodeSize; 164 165 /** 166 * Convenience variable to help us determine when our buffer is going to run out of room and needs resizing. 167 * <code>encodeSize = 4 + lineSeparator.length;</code> 168 */ 169 private final int encodeSize; 170 171 /** 172 * Buffer for streaming. 173 */ 174 private byte[] buffer; 175 176 /** 177 * Position where next character should be written in the buffer. 178 */ 179 private int pos; 180 181 /** 182 * Position where next character should be read from the buffer. 183 */ 184 private int readPos; 185 186 /** 187 * Variable tracks how many characters have been written to the current line. Only used when encoding. We use it to 188 * make sure each encoded line never goes beyond lineLength (if lineLength > 0). 189 */ 190 private int currentLinePos; 191 192 /** 193 * Writes to the buffer only occur after every 3 reads when encoding, an every 4 reads when decoding. This variable 194 * helps track that. 195 */ 196 private int modulus; 197 198 /** 199 * Boolean flag to indicate the EOF has been reached. Once EOF has been reached, this Base64 object becomes useless, 200 * and must be thrown away. 201 */ 202 private boolean eof; 203 204 /** 205 * Place holder for the 3 bytes we're dealing with for our base64 logic. Bitwise operations store and extract the 206 * base64 encoding or decoding from this variable. 207 */ 208 private int x; 209 210 /** 211 * Creates a Base64 codec used for decoding (all modes) and encoding in URL-unsafe mode. 212 * <p> 213 * When encoding the line length is 76, the line separator is CRLF, and the encoding table is STANDARD_ENCODE_TABLE. 214 * </p> 215 * 216 * <p> 217 * When decoding all variants are supported. 218 * </p> 219 */ 220 public Base64() { 221 this(false); 222 } 223 224 /** 225 * Creates a Base64 codec used for decoding (all modes) and encoding in the given URL-safe mode. 226 * <p> 227 * When encoding the line length is 76, the line separator is CRLF, and the encoding table is STANDARD_ENCODE_TABLE. 228 * </p> 229 * 230 * <p> 231 * When decoding all variants are supported. 232 * </p> 233 * 234 * @param urlSafe 235 * if <code>true</code>, URL-safe encoding is used. In most cases this should be set to 236 * <code>false</code>. 237 * @since 1.4 238 */ 239 public Base64(boolean urlSafe) { 240 this(CHUNK_SIZE, CHUNK_SEPARATOR, urlSafe); 241 } 242 243 /** 244 * Creates a Base64 codec used for decoding (all modes) and encoding in URL-unsafe mode. 245 * <p> 246 * When encoding the line length is given in the constructor, the line separator is CRLF, and the encoding table is 247 * STANDARD_ENCODE_TABLE. 248 * </p> 249 * <p> 250 * Line lengths that aren't multiples of 4 will still essentially end up being multiples of 4 in the encoded data. 251 * </p> 252 * <p> 253 * When decoding all variants are supported. 254 * </p> 255 * 256 * @param lineLength 257 * Each line of encoded data will be at most of the given length (rounded down to nearest multiple of 4). 258 * If lineLength <= 0, then the output will not be divided into lines (chunks). Ignored when decoding. 259 * @since 1.4 260 */ 261 public Base64(int lineLength) { 262 this(lineLength, CHUNK_SEPARATOR); 263 } 264 265 /** 266 * Creates a Base64 codec used for decoding (all modes) and encoding in URL-unsafe mode. 267 * <p> 268 * When encoding the line length and line separator are given in the constructor, and the encoding table is 269 * STANDARD_ENCODE_TABLE. 270 * </p> 271 * <p> 272 * Line lengths that aren't multiples of 4 will still essentially end up being multiples of 4 in the encoded data. 273 * </p> 274 * <p> 275 * When decoding all variants are supported. 276 * </p> 277 * 278 * @param lineLength 279 * Each line of encoded data will be at most of the given length (rounded down to nearest multiple of 4). 280 * If lineLength <= 0, then the output will not be divided into lines (chunks). Ignored when decoding. 281 * @param lineSeparator 282 * Each line of encoded data will end with this sequence of bytes. 283 * @throws IllegalArgumentException 284 * Thrown when the provided lineSeparator included some base64 characters. 285 * @since 1.4 286 */ 287 public Base64(int lineLength, byte[] lineSeparator) { 288 this(lineLength, lineSeparator, false); 289 } 290 291 /** 292 * Creates a Base64 codec used for decoding (all modes) and encoding in URL-unsafe mode. 293 * <p> 294 * When encoding the line length and line separator are given in the constructor, and the encoding table is 295 * STANDARD_ENCODE_TABLE. 296 * </p> 297 * <p> 298 * Line lengths that aren't multiples of 4 will still essentially end up being multiples of 4 in the encoded data. 299 * </p> 300 * <p> 301 * When decoding all variants are supported. 302 * </p> 303 * 304 * @param lineLength 305 * Each line of encoded data will be at most of the given length (rounded down to nearest multiple of 4). 306 * If lineLength <= 0, then the output will not be divided into lines (chunks). Ignored when decoding. 307 * @param lineSeparator 308 * Each line of encoded data will end with this sequence of bytes. 309 * @param urlSafe 310 * Instead of emitting '+' and '/' we emit '-' and '_' respectively. urlSafe is only applied to encode 311 * operations. Decoding seamlessly handles both modes. 312 * @throws IllegalArgumentException 313 * The provided lineSeparator included some base64 characters. That's not going to work! 314 * @since 1.4 315 */ 316 public Base64(int lineLength, byte[] lineSeparator, boolean urlSafe) { 317 if (lineSeparator == null) { 318 lineLength = 0; // disable chunk-separating 319 lineSeparator = EMPTY_BYTE_ARRAY; // this just gets ignored 320 } 321 this.lineLength = lineLength > 0 ? (lineLength / 4) * 4 : 0; 322 this.lineSeparator = new byte[lineSeparator.length]; 323 System.arraycopy(lineSeparator, 0, this.lineSeparator, 0, lineSeparator.length); 324 if (lineLength > 0) { 325 this.encodeSize = 4 + lineSeparator.length; 326 } else { 327 this.encodeSize = 4; 328 } 329 this.decodeSize = this.encodeSize - 1; 330 if (containsBase64Byte(lineSeparator)) { 331 String sep = newStringUtf8(lineSeparator); 332 throw new IllegalArgumentException("lineSeperator must not contain base64 characters: [" + sep + "]"); 333 } 334 this.encodeTable = urlSafe ? URL_SAFE_ENCODE_TABLE : STANDARD_ENCODE_TABLE; 335 } 336 337 /** 338 * Returns our current encode mode. True if we're URL-SAFE, false otherwise. 339 * 340 * @return true if we're in URL-SAFE mode, false otherwise. 341 * @since 1.4 342 */ 343 public boolean isUrlSafe() { 344 return this.encodeTable == URL_SAFE_ENCODE_TABLE; 345 } 346 347 /** 348 * Returns true if this Base64 object has buffered data for reading. 349 * 350 * @return true if there is Base64 object still available for reading. 351 */ 352 boolean hasData() { 353 return this.buffer != null; 354 } 355 356 /** 357 * Returns the amount of buffered data available for reading. 358 * 359 * @return The amount of buffered data available for reading. 360 */ 361 int avail() { 362 return buffer != null ? pos - readPos : 0; 363 } 364 365 /** Doubles our buffer. */ 366 private void resizeBuffer() { 367 if (buffer == null) { 368 buffer = new byte[DEFAULT_BUFFER_SIZE]; 369 pos = 0; 370 readPos = 0; 371 } else { 372 byte[] b = new byte[buffer.length * DEFAULT_BUFFER_RESIZE_FACTOR]; 373 System.arraycopy(buffer, 0, b, 0, buffer.length); 374 buffer = b; 375 } 376 } 377 378 /** 379 * Extracts buffered data into the provided byte[] array, starting at position bPos, up to a maximum of bAvail 380 * bytes. Returns how many bytes were actually extracted. 381 * 382 * @param b 383 * byte[] array to extract the buffered data into. 384 * @param bPos 385 * position in byte[] array to start extraction at. 386 * @param bAvail 387 * amount of bytes we're allowed to extract. We may extract fewer (if fewer are available). 388 * @return The number of bytes successfully extracted into the provided byte[] array. 389 */ 390 int readResults(byte[] b, int bPos, int bAvail) { 391 if (buffer != null) { 392 int len = Math.min(avail(), bAvail); 393 if (buffer != b) { 394 System.arraycopy(buffer, readPos, b, bPos, len); 395 readPos += len; 396 if (readPos >= pos) { 397 buffer = null; 398 } 399 } else { 400 // Re-using the original consumer's output array is only 401 // allowed for one round. 402 buffer = null; 403 } 404 return len; 405 } 406 return eof ? -1 : 0; 407 } 408 409 /** 410 * Sets the streaming buffer. This is a small optimization where we try to buffer directly to the consumer's output 411 * array for one round (if the consumer calls this method first) instead of starting our own buffer. 412 * 413 * @param out 414 * byte[] array to buffer directly to. 415 * @param outPos 416 * Position to start buffering into. 417 * @param outAvail 418 * Amount of bytes available for direct buffering. 419 */ 420 void setInitialBuffer(byte[] out, int outPos, int outAvail) { 421 // We can re-use consumer's original output array under 422 // special circumstances, saving on some System.arraycopy(). 423 if (out != null && out.length == outAvail) { 424 buffer = out; 425 pos = outPos; 426 readPos = outPos; 427 } 428 } 429 430 /** 431 * <p> 432 * Encodes all of the provided data, starting at inPos, for inAvail bytes. Must be called at least twice: once with 433 * the data to encode, and once with inAvail set to "-1" to alert encoder that EOF has been reached, so flush last 434 * remaining bytes (if not multiple of 3). 435 * </p> 436 * <p> 437 * Thanks to "commons" project in ws.apache.org for the bitwise operations, and general approach. 438 * http://svn.apache.org/repos/asf/webservices/commons/trunk/modules/util/ 439 * </p> 440 * 441 * @param in 442 * byte[] array of binary data to base64 encode. 443 * @param inPos 444 * Position to start reading data from. 445 * @param inAvail 446 * Amount of bytes available from input for encoding. 447 */ 448 void encode(byte[] in, int inPos, int inAvail) { 449 if (eof) { 450 return; 451 } 452 // inAvail < 0 is how we're informed of EOF in the underlying data we're 453 // encoding. 454 if (inAvail < 0) { 455 eof = true; 456 if (buffer == null || buffer.length - pos < encodeSize) { 457 resizeBuffer(); 458 } 459 switch (modulus) { 460 case 1 : 461 buffer[pos++] = encodeTable[(x >> 2) & MASK_6BITS]; 462 buffer[pos++] = encodeTable[(x << 4) & MASK_6BITS]; 463 // URL-SAFE skips the padding to further reduce size. 464 if (encodeTable == STANDARD_ENCODE_TABLE) { 465 buffer[pos++] = PAD; 466 buffer[pos++] = PAD; 467 } 468 break; 469 470 case 2 : 471 buffer[pos++] = encodeTable[(x >> 10) & MASK_6BITS]; 472 buffer[pos++] = encodeTable[(x >> 4) & MASK_6BITS]; 473 buffer[pos++] = encodeTable[(x << 2) & MASK_6BITS]; 474 // URL-SAFE skips the padding to further reduce size. 475 if (encodeTable == STANDARD_ENCODE_TABLE) { 476 buffer[pos++] = PAD; 477 } 478 break; 479 default: 480 break; // other values ignored 481 } 482 if (lineLength > 0 && pos > 0) { 483 System.arraycopy(lineSeparator, 0, buffer, pos, lineSeparator.length); 484 pos += lineSeparator.length; 485 } 486 } else { 487 for (int i = 0; i < inAvail; i++) { 488 if (buffer == null || buffer.length - pos < encodeSize) { 489 resizeBuffer(); 490 } 491 modulus = (++modulus) % 3; 492 int b = in[inPos++]; 493 if (b < 0) { 494 b += 256; 495 } 496 x = (x << 8) + b; 497 if (0 == modulus) { 498 buffer[pos++] = encodeTable[(x >> 18) & MASK_6BITS]; 499 buffer[pos++] = encodeTable[(x >> 12) & MASK_6BITS]; 500 buffer[pos++] = encodeTable[(x >> 6) & MASK_6BITS]; 501 buffer[pos++] = encodeTable[x & MASK_6BITS]; 502 currentLinePos += 4; 503 if (lineLength > 0 && lineLength <= currentLinePos) { 504 System.arraycopy(lineSeparator, 0, buffer, pos, lineSeparator.length); 505 pos += lineSeparator.length; 506 currentLinePos = 0; 507 } 508 } 509 } 510 } 511 } 512 513 /** 514 * <p> 515 * Decodes all of the provided data, starting at inPos, for inAvail bytes. Should be called at least twice: once 516 * with the data to decode, and once with inAvail set to "-1" to alert decoder that EOF has been reached. The "-1" 517 * call is not necessary when decoding, but it doesn't hurt, either. 518 * </p> 519 * <p> 520 * Ignores all non-base64 characters. This is how chunked (e.g. 76 character) data is handled, since CR and LF are 521 * silently ignored, but has implications for other bytes, too. This method subscribes to the garbage-in, 522 * garbage-out philosophy: it will not check the provided data for validity. 523 * </p> 524 * <p> 525 * Thanks to "commons" project in ws.apache.org for the bitwise operations, and general approach. 526 * http://svn.apache.org/repos/asf/webservices/commons/trunk/modules/util/ 527 * </p> 528 * 529 * @param in 530 * byte[] array of ascii data to base64 decode. 531 * @param inPos 532 * Position to start reading data from. 533 * @param inAvail 534 * Amount of bytes available from input for encoding. 535 */ 536 void decode(byte[] in, int inPos, int inAvail) { 537 if (eof) { 538 return; 539 } 540 if (inAvail < 0) { 541 eof = true; 542 } 543 for (int i = 0; i < inAvail; i++) { 544 if (buffer == null || buffer.length - pos < decodeSize) { 545 resizeBuffer(); 546 } 547 byte b = in[inPos++]; 548 if (b == PAD) { 549 // We're done. 550 eof = true; 551 break; 552 } else { 553 if (b >= 0 && b < DECODE_TABLE.length) { 554 int result = DECODE_TABLE[b]; 555 if (result >= 0) { 556 modulus = (++modulus) % 4; 557 x = (x << 6) + result; 558 if (modulus == 0) { 559 buffer[pos++] = (byte) ((x >> 16) & MASK_8BITS); 560 buffer[pos++] = (byte) ((x >> 8) & MASK_8BITS); 561 buffer[pos++] = (byte) (x & MASK_8BITS); 562 } 563 } 564 } 565 } 566 } 567 568 // Two forms of EOF as far as base64 decoder is concerned: actual 569 // EOF (-1) and first time '=' character is encountered in stream. 570 // This approach makes the '=' padding characters completely optional. 571 if (eof && modulus != 0) { 572 x = x << 6; 573 switch (modulus) { 574 case 2 : 575 x = x << 6; 576 buffer[pos++] = (byte) ((x >> 16) & MASK_8BITS); 577 break; 578 case 3 : 579 buffer[pos++] = (byte) ((x >> 16) & MASK_8BITS); 580 buffer[pos++] = (byte) ((x >> 8) & MASK_8BITS); 581 break; 582 default: 583 break; // other values ignored 584 } 585 } 586 } 587 588 /** 589 * Returns whether or not the <code>octet</code> is in the base 64 alphabet. 590 * 591 * @param octet 592 * The value to test 593 * @return <code>true</code> if the value is defined in the the base 64 alphabet, <code>false</code> otherwise. 594 * @since 1.4 595 */ 596 public static boolean isBase64(byte octet) { 597 return octet == PAD || (octet >= 0 && octet < DECODE_TABLE.length && DECODE_TABLE[octet] != -1); 598 } 599 600 /** 601 * Tests a given byte array to see if it contains only valid characters within the Base64 alphabet. Currently the 602 * method treats whitespace as valid. 603 * 604 * @param arrayOctet 605 * byte array to test 606 * @return <code>true</code> if all bytes are valid characters in the Base64 alphabet or if the byte array is empty; 607 * false, otherwise 608 */ 609 public static boolean isArrayByteBase64(byte[] arrayOctet) { 610 for (int i = 0; i < arrayOctet.length; i++) { 611 if (!isBase64(arrayOctet[i]) && !isWhiteSpace(arrayOctet[i])) { 612 return false; 613 } 614 } 615 return true; 616 } 617 618 /** 619 * Tests a given byte array to see if it contains only valid characters within the Base64 alphabet. 620 * 621 * @param arrayOctet 622 * byte array to test 623 * @return <code>true</code> if any byte is a valid character in the Base64 alphabet; false herwise 624 */ 625 private static boolean containsBase64Byte(byte[] arrayOctet) { 626 for (byte element : arrayOctet) 627 { 628 if (isBase64(element)) { 629 return true; 630 } 631 } 632 return false; 633 } 634 635 /** 636 * Encodes binary data using the base64 algorithm but does not chunk the output. 637 * 638 * @param binaryData 639 * binary data to encode 640 * @return byte[] containing Base64 characters in their UTF-8 representation. 641 */ 642 public static byte[] encodeBase64(byte[] binaryData) { 643 return encodeBase64(binaryData, false); 644 } 645 646 /** 647 * Encodes binary data using the base64 algorithm into 76 character blocks separated by CRLF. 648 * <p> 649 * For a non-chunking version, see {@link #encodeBase64StringUnChunked(byte[])}. 650 * 651 * @param binaryData 652 * binary data to encode 653 * @return String containing Base64 characters. 654 * @since 1.4 655 */ 656 public static String encodeBase64String(byte[] binaryData) { 657 return newStringUtf8(encodeBase64(binaryData, true)); 658 } 659 660 /** 661 * Encodes binary data using the base64 algorithm, without using chunking. 662 * <p> 663 * For a chunking version, see {@link #encodeBase64String(byte[])}. 664 * 665 * @param binaryData 666 * binary data to encode 667 * @return String containing Base64 characters. 668 * @since 3.2 669 */ 670 public static String encodeBase64StringUnChunked(byte[] binaryData) { 671 return newStringUtf8(encodeBase64(binaryData, false)); 672 } 673 674 /** 675 * Encodes binary data using the base64 algorithm. 676 * 677 * @param binaryData 678 * binary data to encode 679 * @param useChunking whether to split the output into chunks 680 * @return String containing Base64 characters. 681 * @since 3.2 682 */ 683 public static String encodeBase64String(byte[] binaryData, boolean useChunking) { 684 return newStringUtf8(encodeBase64(binaryData, useChunking)); 685 } 686 687 /** 688 * Encodes binary data using a URL-safe variation of the base64 algorithm but does not chunk the output. The 689 * url-safe variation emits - and _ instead of + and / characters. 690 * 691 * @param binaryData 692 * binary data to encode 693 * @return byte[] containing Base64 characters in their UTF-8 representation. 694 * @since 1.4 695 */ 696 public static byte[] encodeBase64URLSafe(byte[] binaryData) { 697 return encodeBase64(binaryData, false, true); 698 } 699 700 /** 701 * Encodes binary data using a URL-safe variation of the base64 algorithm but does not chunk the output. The 702 * url-safe variation emits - and _ instead of + and / characters. 703 * 704 * @param binaryData 705 * binary data to encode 706 * @return String containing Base64 characters 707 * @since 1.4 708 */ 709 public static String encodeBase64URLSafeString(byte[] binaryData) { 710 return newStringUtf8(encodeBase64(binaryData, false, true)); 711 } 712 713 /** 714 * Encodes binary data using the base64 algorithm and chunks the encoded output into 76 character blocks 715 * 716 * @param binaryData 717 * binary data to encode 718 * @return Base64 characters chunked in 76 character blocks 719 */ 720 public static byte[] encodeBase64Chunked(byte[] binaryData) { 721 return encodeBase64(binaryData, true); 722 } 723 724 /** 725 * Decodes a String containing containing characters in the Base64 alphabet. 726 * 727 * @param pArray 728 * A String containing Base64 character data 729 * @return a byte array containing binary data 730 * @since 1.4 731 */ 732 public byte[] decode(String pArray) { 733 return decode(getBytesUtf8(pArray)); 734 } 735 736 private byte[] getBytesUtf8(String pArray) { 737 try { 738 return pArray.getBytes("UTF8"); 739 } catch (UnsupportedEncodingException e) { 740 throw new RuntimeException(e); 741 } 742 } 743 744 /** 745 * Decodes a byte[] containing containing characters in the Base64 alphabet. 746 * 747 * @param pArray 748 * A byte array containing Base64 character data 749 * @return a byte array containing binary data 750 */ 751 public byte[] decode(byte[] pArray) { 752 reset(); 753 if (pArray == null || pArray.length == 0) { 754 return pArray; 755 } 756 long len = (pArray.length * 3) / 4; 757 byte[] buf = new byte[(int) len]; 758 setInitialBuffer(buf, 0, buf.length); 759 decode(pArray, 0, pArray.length); 760 decode(pArray, 0, -1); // Notify decoder of EOF. 761 762 // Would be nice to just return buf (like we sometimes do in the encode 763 // logic), but we have no idea what the line-length was (could even be 764 // variable). So we cannot determine ahead of time exactly how big an 765 // array is necessary. Hence the need to construct a 2nd byte array to 766 // hold the final result: 767 768 byte[] result = new byte[pos]; 769 readResults(result, 0, result.length); 770 return result; 771 } 772 773 /** 774 * Encodes binary data using the base64 algorithm, optionally chunking the output into 76 character blocks. 775 * 776 * @param binaryData 777 * Array containing binary data to encode. 778 * @param isChunked 779 * if <code>true</code> this encoder will chunk the base64 output into 76 character blocks 780 * @return Base64-encoded data. 781 * @throws IllegalArgumentException 782 * Thrown when the input array needs an output array bigger than {@link Integer#MAX_VALUE} 783 */ 784 public static byte[] encodeBase64(byte[] binaryData, boolean isChunked) { 785 return encodeBase64(binaryData, isChunked, false); 786 } 787 788 /** 789 * Encodes binary data using the base64 algorithm, optionally chunking the output into 76 character blocks. 790 * 791 * @param binaryData 792 * Array containing binary data to encode. 793 * @param isChunked 794 * if <code>true</code> this encoder will chunk the base64 output into 76 character blocks 795 * @param urlSafe 796 * if <code>true</code> this encoder will emit - and _ instead of the usual + and / characters. 797 * @return Base64-encoded data. 798 * @throws IllegalArgumentException 799 * Thrown when the input array needs an output array bigger than {@link Integer#MAX_VALUE} 800 * @since 1.4 801 */ 802 public static byte[] encodeBase64(byte[] binaryData, boolean isChunked, boolean urlSafe) { 803 return encodeBase64(binaryData, isChunked, urlSafe, Integer.MAX_VALUE); 804 } 805 806 /** 807 * Encodes binary data using the base64 algorithm, optionally chunking the output into 76 character blocks. 808 * 809 * @param binaryData 810 * Array containing binary data to encode. 811 * @param isChunked 812 * if <code>true</code> this encoder will chunk the base64 output into 76 character blocks 813 * @param urlSafe 814 * if <code>true</code> this encoder will emit - and _ instead of the usual + and / characters. 815 * @param maxResultSize 816 * The maximum result size to accept. 817 * @return Base64-encoded data. 818 * @throws IllegalArgumentException 819 * Thrown when the input array needs an output array bigger than maxResultSize 820 * @since 1.4 821 */ 822 public static byte[] encodeBase64(byte[] binaryData, boolean isChunked, boolean urlSafe, int maxResultSize) { 823 if (binaryData == null || binaryData.length == 0) { 824 return binaryData; 825 } 826 827 long len = getEncodeLength(binaryData, isChunked ? CHUNK_SIZE : 0, isChunked ? CHUNK_SEPARATOR : EMPTY_BYTE_ARRAY); 828 if (len > maxResultSize) { 829 throw new IllegalArgumentException("Input array too big, the output array would be bigger (" + 830 len + 831 ") than the specified maxium size of " + 832 maxResultSize); 833 } 834 835 Base64 b64 = isChunked ? new Base64(urlSafe) : new Base64(0, CHUNK_SEPARATOR, urlSafe); 836 return b64.encode(binaryData); 837 } 838 839 /** 840 * Decodes a Base64 String into octets 841 * 842 * @param base64String 843 * String containing Base64 data 844 * @return Array containing decoded data. 845 * @since 1.4 846 */ 847 public static byte[] decodeBase64(String base64String) { 848 return new Base64().decode(base64String); 849 } 850 851 /** 852 * Decodes Base64 data into octets 853 * 854 * @param base64Data 855 * Byte array containing Base64 data 856 * @return Array containing decoded data. 857 */ 858 public static byte[] decodeBase64(byte[] base64Data) { 859 return new Base64().decode(base64Data); 860 } 861 862 863 864 /** 865 * Checks if a byte value is whitespace or not. 866 * 867 * @param byteToCheck 868 * the byte to check 869 * @return true if byte is whitespace, false otherwise 870 */ 871 private static boolean isWhiteSpace(byte byteToCheck) { 872 switch (byteToCheck) { 873 case ' ' : 874 case '\n' : 875 case '\r' : 876 case '\t' : 877 return true; 878 default : 879 return false; 880 } 881 } 882 883 /** 884 * Encodes a byte[] containing binary data, into a String containing characters in the Base64 alphabet. 885 * 886 * @param pArray 887 * a byte array containing binary data 888 * @return A String containing only Base64 character data 889 * @since 1.4 890 */ 891 public String encodeToString(byte[] pArray) { 892 return newStringUtf8(encode(pArray)); 893 } 894 895 private static String newStringUtf8(byte[] encode) { 896 String str = null; 897 try { 898 str = new String(encode, "UTF8"); 899 } catch (UnsupportedEncodingException ue) { 900 throw new RuntimeException(ue); 901 } 902 return str; 903 } 904 905 /** 906 * Encodes a byte[] containing binary data, into a byte[] containing characters in the Base64 alphabet. 907 * 908 * @param pArray 909 * a byte array containing binary data 910 * @return A byte array containing only Base64 character data 911 */ 912 public byte[] encode(byte[] pArray) { 913 reset(); 914 if (pArray == null || pArray.length == 0) { 915 return pArray; 916 } 917 long len = getEncodeLength(pArray, lineLength, lineSeparator); 918 byte[] buf = new byte[(int) len]; 919 setInitialBuffer(buf, 0, buf.length); 920 encode(pArray, 0, pArray.length); 921 encode(pArray, 0, -1); // Notify encoder of EOF. 922 // Encoder might have resized, even though it was unnecessary. 923 if (buffer != buf) { 924 readResults(buf, 0, buf.length); 925 } 926 // In URL-SAFE mode we skip the padding characters, so sometimes our 927 // final length is a bit smaller. 928 if (isUrlSafe() && pos < buf.length) { 929 byte[] smallerBuf = new byte[pos]; 930 System.arraycopy(buf, 0, smallerBuf, 0, pos); 931 buf = smallerBuf; 932 } 933 return buf; 934 } 935 936 /** 937 * Pre-calculates the amount of space needed to base64-encode the supplied array. 938 * 939 * @param pArray byte[] array which will later be encoded 940 * @param chunkSize line-length of the output (<= 0 means no chunking) between each 941 * chunkSeparator (e.g. CRLF). 942 * @param chunkSeparator the sequence of bytes used to separate chunks of output (e.g. CRLF). 943 * 944 * @return amount of space needed to encoded the supplied array. Returns 945 * a long since a max-len array will require Integer.MAX_VALUE + 33%. 946 */ 947 private static long getEncodeLength(byte[] pArray, int chunkSize, byte[] chunkSeparator) { 948 // base64 always encodes to multiples of 4. 949 chunkSize = (chunkSize / 4) * 4; 950 951 long len = (pArray.length * 4) / 3; 952 long mod = len % 4; 953 if (mod != 0) { 954 len += 4 - mod; 955 } 956 if (chunkSize > 0) { 957 boolean lenChunksPerfectly = len % chunkSize == 0; 958 len += (len / chunkSize) * chunkSeparator.length; 959 if (!lenChunksPerfectly) { 960 len += chunkSeparator.length; 961 } 962 } 963 return len; 964 } 965 966 // Implementation of integer encoding used for crypto 967 /** 968 * Decodes a byte64-encoded integer according to crypto standards such as W3C's XML-Signature 969 * 970 * @param pArray 971 * a byte array containing base64 character data 972 * @return A BigInteger 973 * @since 1.4 974 */ 975 public static BigInteger decodeInteger(byte[] pArray) { 976 return new BigInteger(1, decodeBase64(pArray)); 977 } 978 979 /** 980 * Encodes to a byte64-encoded integer according to crypto standards such as W3C's XML-Signature 981 * 982 * @param bigInt 983 * a BigInteger 984 * @return A byte array containing base64 character data 985 * @throws NullPointerException 986 * if null is passed in 987 * @since 1.4 988 */ 989 public static byte[] encodeInteger(BigInteger bigInt) { 990 if (bigInt == null) { 991 throw new NullPointerException("encodeInteger called with null parameter"); 992 } 993 return encodeBase64(toIntegerBytes(bigInt), false); 994 } 995 996 /** 997 * Returns a byte-array representation of a <code>BigInteger</code> without sign bit. 998 * 999 * @param bigInt 1000 * <code>BigInteger</code> to be converted 1001 * @return a byte array representation of the BigInteger parameter 1002 */ 1003 static byte[] toIntegerBytes(BigInteger bigInt) { 1004 int bitlen = bigInt.bitLength(); 1005 // round bitlen 1006 bitlen = ((bitlen + 7) >> 3) << 3; 1007 byte[] bigBytes = bigInt.toByteArray(); 1008 1009 if (((bigInt.bitLength() % 8) != 0) && (((bigInt.bitLength() / 8) + 1) == (bitlen / 8))) { 1010 return bigBytes; 1011 } 1012 // set up params for copying everything but sign bit 1013 int startSrc = 0; 1014 int len = bigBytes.length; 1015 1016 // if bigInt is exactly byte-aligned, just skip signbit in copy 1017 if ((bigInt.bitLength() % 8) == 0) { 1018 startSrc = 1; 1019 len--; 1020 } 1021 int startDst = bitlen / 8 - len; // to pad w/ nulls as per spec 1022 byte[] resizedBytes = new byte[bitlen / 8]; 1023 System.arraycopy(bigBytes, startSrc, resizedBytes, startDst, len); 1024 return resizedBytes; 1025 } 1026 1027 /** 1028 * Resets this Base64 object to its initial newly constructed state. 1029 */ 1030 private void reset() { 1031 buffer = null; 1032 pos = 0; 1033 readPos = 0; 1034 currentLinePos = 0; 1035 modulus = 0; 1036 eof = false; 1037 } 1038 1039 // Getters for use in testing 1040 1041 int getLineLength() { 1042 return lineLength; 1043 } 1044 1045 byte[] getLineSeparator() { 1046 return lineSeparator.clone(); 1047 } 1048 }