template< class Rep, class Period >

std::cv_status wait_for( BasicLockable& lock,

                         const std::chrono::duration<Rep, Period>& rel_time);
(1) (since C++11)
template< class Rep, class Period, class Predicate >

bool wait_for( BasicLocable& lock,
               const std::chrono::duration<Rep, Period>& rel_time,

               Predicate pred);
(2) (since C++11)

1) Atomically releases lock, blocks the current executing thread, and adds it to the list of threads waiting on *this. The thread will be unblocked when notify_all() or notify_one() is executed, or when the relative timeout rel_time expires. It may also be unblocked spuriously. When unblocked, regardless of the reason, lock is reacquired and wait_for() exits. If this function exits via exception, lock is also reacquired.

2) Equivalent to

while (!pred())
    if (wait_for(lock, rel_time) == std::cv_status::timeout)
        return pred();
return true;

This overload may be used to ignore spurious awakenings.


[edit] Parameters

lock - an object of BasicLockable type, which must be locked by the current thread
rel_time - an object of type std::chrono::duration representing the maximum time to spend waiting
pred - predicate which returns ​false if the waiting should be continued.

The signature of the predicate function should be equivalent to the following:

bool pred();

[edit] Return value

1) std::cv_status::timeout if the relative timeout specified by rel_time expired, std::cv_status::no_timeout overwise.

2) false if the predicate pred still evaluates to false after the rel_time timeout expired, otherwise true.

[edit] Exceptions

May throw std::system_error, may also propagate exceptions thrown by lock.lock() or lock.unlock().

[edit] Notes

Calling this function if lock.mutex() is not locked by the current thread is undefined behavior.

Calling this function if lock.mutex() is not the same mutex as the one used by all other threads that are currently waiting on the same condition variable is undefined behavior.

[edit] Example

#include <iostream>
#include <atomic>
#include <condition_variable>
#include <thread>
#include <chrono>
std::condition_variable_any cv;
std::mutex cv_m;
std::atomic<int> i = ATOMIC_VAR_INIT(0);
void waits(int idx)
    std::unique_lock<std::mutex> lk(cv_m);
    if(cv.wait_for(lk, std::chrono::milliseconds(idx*100), [](){return i == 1;})) 
        std::cerr << "Thread " << idx << " finished waiting. i == " << i << '\n';
        std::cerr << "Thread " << idx << " timed out. i == " << i << '\n';
void signals()
    std::cerr << "Notifying...\n";
    i = 1;
    std::cerr << "Notifying again...\n";
int main()
    std::thread t1(waits, 1), t2(waits, 2), t3(waits, 3), t4(signals);
    t1.join(); t2.join(), t3.join(), t4.join();


Thread 1 timed out. i == 0
Thread 2 timed out. i == 0
Notifying again...
Thread 3 finished waiting. i == 1

[edit] See also

blocks the current thread until the condition variable is woken up
(public member function)
blocks the current thread until the condition variable
is woken up or until specified time point has been reached
(public member function)