Next: Conical Functions, Previous: Legendre Polynomials, Up: Legendre Functions and Spherical Harmonics
The following functions compute the associated Legendre Polynomials
P_l^m(x). Note that this function grows combinatorially with
l and can overflow for l larger than about 150. There is
no trouble for small m, but overflow occurs when m and
l are both large. Rather than allow overflows, these functions
refuse to calculate P_l^m(x) and return GSL_EOVRFLW
when
they can sense that l and m are too big.
If you want to calculate a spherical harmonic, then do not use
these functions. Instead use gsl_sf_legendre_sphPlm
below,
which uses a similar recursion, but with the normalized functions.
These routines compute the associated Legendre polynomial P_l^m(x) for m >= 0, l >= m, |x| <= 1.
These functions compute arrays of Legendre polynomials P_l^m(x) and derivatives dP_l^m(x)/dx, for m >= 0, l = |m|, ..., lmax, |x| <= 1.
These routines compute the normalized associated Legendre polynomial \sqrt{(2l+1)/(4\pi)} \sqrt{(l-m)!/(l+m)!} P_l^m(x) suitable for use in spherical harmonics. The parameters must satisfy m >= 0, l >= m, |x| <= 1. Theses routines avoid the overflows that occur for the standard normalization of P_l^m(x).
These functions compute arrays of normalized associated Legendre functions \sqrt{(2l+1)/(4\pi)} \sqrt{(l-m)!/(l+m)!} P_l^m(x), and derivatives, for m >= 0, l = |m|, ..., lmax, |x| <= 1.0