The following program demonstrates the use of the one-dimensional wavelet transform functions. It computes an approximation to an input signal (of length 256) using the 20 largest components of the wavelet transform, while setting the others to zero.
#include <stdio.h> #include <math.h> #include <gsl/gsl_sort.h> #include <gsl/gsl_wavelet.h> int main (int argc, char **argv) { int i, n = 256, nc = 20; double *data = malloc (n * sizeof (double)); double *abscoeff = malloc (n * sizeof (double)); size_t *p = malloc (n * sizeof (size_t)); FILE * f; gsl_wavelet *w; gsl_wavelet_workspace *work; w = gsl_wavelet_alloc (gsl_wavelet_daubechies, 4); work = gsl_wavelet_workspace_alloc (n); f = fopen (argv[1], "r"); for (i = 0; i < n; i++) { fscanf (f, "%lg", &data[i]); } fclose (f); gsl_wavelet_transform_forward (w, data, 1, n, work); for (i = 0; i < n; i++) { abscoeff[i] = fabs (data[i]); } gsl_sort_index (p, abscoeff, 1, n); for (i = 0; (i + nc) < n; i++) data[p[i]] = 0; gsl_wavelet_transform_inverse (w, data, 1, n, work); for (i = 0; i < n; i++) { printf ("%g\n", data[i]); } gsl_wavelet_free (w); gsl_wavelet_workspace_free (work); free (data); free (abscoeff); free (p); return 0; }
The output can be used with the gnu plotutils graph
program,
$ ./a.out ecg.dat > dwt.dat $ graph -T ps -x 0 256 32 -h 0.3 -a dwt.dat > dwt.ps