Next: Complex Number References and Further Reading, Previous: Complex Hyperbolic Functions, Up: Complex Numbers
This function returns the complex hyperbolic arcsine of the complex number z, \arcsinh(z). The branch cuts are on the imaginary axis, below -i and above i.
This function returns the complex hyperbolic arccosine of the complex number z, \arccosh(z). The branch cut is on the real axis, less than 1. Note that in this case we use the negative square root in formula 4.6.21 of Abramowitz & Stegun giving \arccosh(z)=\log(z-\sqrt{z^2-1}).
This function returns the complex hyperbolic arccosine of the real number z, \arccosh(z).
This function returns the complex hyperbolic arctangent of the complex number z, \arctanh(z). The branch cuts are on the real axis, less than -1 and greater than 1.
This function returns the complex hyperbolic arctangent of the real number z, \arctanh(z).
This function returns the complex hyperbolic arcsecant of the complex number z, \arcsech(z) = \arccosh(1/z).