Next: Finding maximum and minimum elements of matrices, Previous: Exchanging rows and columns, Up: Matrices
The following operations are defined for real and complex matrices.
This function adds the elements of matrix b to the elements of matrix a. The result a(i,j) \leftarrow a(i,j) + b(i,j) is stored in a and b remains unchanged. The two matrices must have the same dimensions.
This function subtracts the elements of matrix b from the elements of matrix a. The result a(i,j) \leftarrow a(i,j) - b(i,j) is stored in a and b remains unchanged. The two matrices must have the same dimensions.
This function multiplies the elements of matrix a by the elements of matrix b. The result a(i,j) \leftarrow a(i,j) * b(i,j) is stored in a and b remains unchanged. The two matrices must have the same dimensions.
This function divides the elements of matrix a by the elements of matrix b. The result a(i,j) \leftarrow a(i,j) / b(i,j) is stored in a and b remains unchanged. The two matrices must have the same dimensions.