The F-distribution arises in statistics. If Y_1 and Y_2 are chi-squared deviates with \nu_1 and \nu_2 degrees of freedom then the ratio,
X = { (Y_1 / \nu_1) \over (Y_2 / \nu_2) }
has an F-distribution F(x;\nu_1,\nu_2).
This function returns a random variate from the F-distribution with degrees of freedom nu1 and nu2. The distribution function is,
p(x) dx = { \Gamma((\nu_1 + \nu_2)/2) \over \Gamma(\nu_1/2) \Gamma(\nu_2/2) } \nu_1^{\nu_1/2} \nu_2^{\nu_2/2} x^{\nu_1/2 - 1} (\nu_2 + \nu_1 x)^{-\nu_1/2 -\nu_2/2}for x >= 0.
This function computes the probability density p(x) at x for an F-distribution with nu1 and nu2 degrees of freedom, using the formula given above.
These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the F-distribution with nu1 and nu2 degrees of freedom.