Previous chapters have discussed how to play or capture audio samples. The implicit goal has been to deliver samples as faithfully as possible, without modification (other than possibly mixing the samples with those from other audio lines). Sometimes, however, you want to be able to modify the signal. The user might want it to sound louder, quieter, fuller, more reverberant, higher or lower in pitch, and so on. This chapter discusses the Java Sound API features that provide these kinds of signal processing.
There are two ways to apply signal processing:
Control
objects and
then setting the controls as the user desires. Typical controls
supported by mixers and lines include gain, pan, and reverberation
controls. A mixer can have various sorts of
signal-processing controls on some or all of its lines. For
example, a mixer used for audio capture might have an input port
with a gain control, and target data lines with gain and pan
controls. A mixer used for audio playback might have sample-rate
controls on its source data lines. In each case, the controls are
all accessed through methods of the Line
interface.
Because the Mixer
interface
extends Line
, the mixer itself can have its own set of
controls. These might serve as master controls affecting all the
mixer's source or target lines. For example, the mixer might have a
master gain control whose value in decibels is added to the values
of individual gain controls on its target lines.
Others of the mixer's own controls might affect a special line, neither a source nor a target, that the mixer uses internally for its processing. For example, a global reverb control might choose the sort of reverberation to apply to a mixture of the input signals, and this "wet" (reverberated) signal would get mixed back into the "dry" signal before delivery to the mixer's target lines.
If the mixer or any of its lines have controls, you might wish to expose the controls via graphical objects in your program's user interface, so that the user can adjust the audio characteristics as desired. The controls are not themselves graphical; they just allow you to retrieve and change their settings. It's up to you to decide what sort of graphical representations (sliders, buttons, etc.), if any, to use in your program.
All controls are implemented as concrete
subclasses of the abstract class Control
. Many typical
audio-processing controls can be described by abstract subclasses
of Control
based on a data type (such as boolean,
enumerated, or float). Boolean controls, for example, represent
binary-state controls, such as on/off controls for mute or reverb.
Float controls, on the other hand, are well suited to represent
continuously variable controls, such as pan, balance, or
volume.
The Java Sound API specifies the following
abstract subclasses of Control
:
BooleanControl
—represents a binary-state
(true or false) control. For example, mute, solo, and on/off
switches would be good candidates for BooleanControls
.
FloatControl
—data model providing control
over a range of floating-point values. For example, volume and pan
are FloatControls
that could be manipulated via a dial
or slider. EnumControl
—offers a choice from a set of
objects. For example, you might associate a set of buttons in the
user interface with an EnumControl
to select one of
several preset reverberation settings. CompoundControl
—provides access to a
collection of related items, each of which is itself an instance of
a Control
subclass. CompoundControls
represent multi-control modules such as graphic equalizers. (A
graphic equalizer would typically be depicted by a set of sliders,
each affecting a FloatControl
.)
Control
above has methods appropriate
for its underlying data type. Most of the classes include methods
that set and get the control's current value(s), get the control's
label(s), and so on.
Of course, each class has methods that are
particular to it and the data model represented by the class. For
example, EnumControl
has a method that lets you get
the set of its possible values, and FloatControl
permits you to get its minimum and maximum values, as well as the
precision (increment or step size) of the control.
Each subclass of Control
has
a corresponding Control.Type
subclass, which includes
static instances that identify specific controls.
The following table shows each
Control
subclass, its corresponding
Control.Type
subclass, and the static instances that
indicate specific kinds of controls:
An implementation of the Java Sound API
can provide any or all of these control types on its mixers and
lines. It can also supply additional control types not defined in
the Java Sound API. Such control types could be implemented via
concrete subclasses of any of these four abstract subclasses, or
via additional Control
subclasses that don't inherit
from any of these four abstract subclasses. An application program
can query each line to find what controls it supports.
In many cases, an application program will
simply display whatever controls happen to be supported by the line
in question. If the line doesn't have any controls, so be it. But
what if it's important to find a line that has certain controls? In
that case, you can use a Line.Info
to obtain a line
that has the right characteristics, as described under "Getting a Line of a Desired Type" in
Chapter 3, "Accessing Audio System
Resources."
For example, suppose you prefer an input port that lets the user set the volume of the sound input. The following code excerpt shows how one might query the default mixer to determine whether it has the desired port and control:
Port lineIn;
FloatControl volCtrl;
try {
mixer = AudioSystem.getMixer(null);
lineIn = (Port)mixer.getLine(Port.Info.LINE_IN);
lineIn.open();
volCtrl = (FloatControl) lineIn.getControl(
FloatControl.Type.VOLUME);// Assuming getControl call succeeds,
// we now have our LINE_IN VOLUME control.
} catch (Exception e) {
System.out.println("Failed trying to find LINE_IN"
+ " VOLUME control: exception = " + e);
}
if (volCtrl != null)
// ...
An application program that needs to
expose controls in its user interface might simply query the
available lines and controls, and then display an appropriate
user-interface element for every control on every line of interest.
In such a case, the program's only mission is to provide the user
with "handles" on the control; not to know what those controls do
to the audio signal. As long as the program knows how to map a
line's controls into user-interface elements, the Java Sound API
architecture of Mixer
, Line
, and
Control
will generally take care of the rest.
For example, suppose your program plays
back sound. You're using a SourceDataLine
, which
you've obtained as described under "Getting a Line of a Desired Type" in
Chapter 3, "Accessing Audio System
Resources." You can access the line's controls by invoking the
Line
method:
Control[] getControls()Then, for each of the controls in this returned array, you then use the following
Control
method to get the control's
type:
Control.Type getType()Knowing the specific
Control.Type
instance, your
program can display a corresponding user-interface element. Of
course, choosing "a corresponding user-interface element" for a
specific Control.Type
depends on the approach taken by
your program. On the one hand, you might use the same kind of
element to represent all Control.Type
instances of the
same class. This would require you to query the class of
the Control.Type
instance using, for example, the
Object.getClass
method. Let's say the result matched
BooleanControl.Type
. In this case, your program might
display a generic checkbox or toggle button, but if its class
matched FloatControl.Type
, then you might display a
graphic slider.
On the other hand, your program might
distinguish between different types of controls—even those of
the same class—and use a different user-interface element for
each one. This would require you to test the instance
returned by Control's getType
method. Then if, for
example, the type matched
BooleanControl.Type.APPLY_REVERB
, your program might
display a checkbox; while if the type matched
BooleanControl.Type.MUTE
, you might instead display a
toggle button.
Note
The current implementation requires that to change the value of
a |
Now that you know how to access a control
and determine its type, this section will describe how to use
Controls
to change aspects of the audio signal. This
section doesn't cover every available control; rather, it provides
a few examples in this area to show you how to get started. These
example include:
Control
methods becomes a fairly straightforward
matter.
The following subsections describe some of the methods that must be invoked to affect the changes to specific controls.
Controlling the mute state of any line is
simply a matter of calling the following
BooleanControl
method:
void setValue(boolean value)(Presumably, the program knows, by referring to its control-management data structures, that the mute is an instance of a
BooleanControl
.) To mute the signal that's passing
through the line, the program invokes the method above, specifying
true
as the value. To turn muting off, permitting the
signal to flow through the line, the program invokes the method
with the parameter set to false
.
Let's assume your program associates a
particular graphic slider with a particular line's volume control.
The value of a volume control (i.e.,
FloatControl.Type.VOLUME
) is set using the following
FloatControl
method:
void setValue(float newValue)Detecting that the user moved the slider, the program gets the slider's current value and passes it, as the parameter
newValue
, to the method above. This changes the volume
of the signal flowing though the line that "owns" the control.
Let's suppose that our program has a mixer
with a line that has a control of type
EnumControl.Type.REVERB
. Calling the
EnumControl
method:
java.lang.Objects[] getValues()on that control produces an array of
ReverbType
objects. If desired, the particular parameter settings of each of
these objects can be accessed using the following
ReverbType
methods:
int getDecayTime() int getEarlyReflectionDelay() float getEarlyReflectionIntensity() int getLateReflectionDelay() float getLateReflectionIntensity()For example, if a program only wants a single reverb setting that sounds like a cavern, it can iterate over the
ReverbType
objects until it finds one for which
getDecayTime
returns a value greater than 2000. For a
thorough explanation of these methods, including a table of
representative return values, see the API reference documentation
for javax.sound.sampled.ReverbType
.
Typically, though, a program will create a
user-interface element, for example, a radio button, for each of
the ReverbType
objects within the array returned by
the getValues
method. When the user clicks on one of
these radio buttons, the program invokes the
EnumControl
method
void setValue(java.lang.Object value)where
value
is set to the ReverbType
that
corresponds to the newly engaged button. The audio signal sent
through the line that "owns" this EnumControl
will
then be reverberated according to the parameter settings that
constitute the control's current ReverbType
(i.e., the
particular ReverbType
specified in the
value
argument of the setValue
method).
So, from our application program's
perspective, enabling a user to move from one reverberation preset
(i.e., ReverbType) to another is simply a matter of connecting each
element of the array returned by getValues
to a
distinct radio button.
The Control
API allows an
implementation of the Java Sound API, or a third-party provider of
a mixer, to supply arbitrary sorts of signal processing through
controls. But what if no mixer offers the kind of signal processing
you need? It will take more work, but you might be able to
implement the signal processing in your program. Because the Java
Sound API gives you access to the audio data as an array of bytes,
you can alter these bytes in any way you choose.
If you're processing incoming sound, you
can read the bytes from a TargetDataLine
and then
manipulate them. An algorithmically trivial example that can yield
sonically intriguing results is to play a sound backwards by
arranging its frames in reverse order. This trivial example may not
be of much use for your program, but there are numerous
sophisticated digital signal processing (DSP) techniques that might
be more appropriate. Some examples are equalization, dynamic-range
compression, peak limiting, and time stretching or compression, as
well as special effects such as delay, chorus, flanging,
distortion, and so on.
To play back processed sound, you can
place your manipulated array of bytes into a
SourceDataLine
or Clip
. Of course, the
array of bytes need not be derived from an existing sound. You can
synthesize sounds from scratch, although this requires some
knowledge of acoustics or else access to sound-synthesis functions.
For either processing or synthesis, you may want to consult an
audio DSP textbook for the algorithms in which you're interested,
or else import a third-party library of signal-processing functions
into your program. For playback of synthesized sound, consider
whether the Synthesizer
API in the
javax.sound.midi
package meets your needs instead.
(See Chapter 12, "Synthesizing
Sound.")