Boost C++ Libraries Home Libraries People FAQ More

PrevUpHomeNext

Class template flat_multiset

boost::container::flat_multiset

Synopsis

// In header: <boost/container/flat_set.hpp>

template<typename T, typename Pred = std::less<T>, 
         typename A = std::allocator<T> > 
class flat_multiset {
public:
  // types
  typedef tree_t::key_type               key_type;              
  typedef tree_t::value_type             value_type;            
  typedef tree_t::pointer                pointer;               
  typedef tree_t::const_pointer          const_pointer;         
  typedef tree_t::reference              reference;             
  typedef tree_t::const_reference        const_reference;       
  typedef tree_t::key_compare            key_compare;           
  typedef tree_t::value_compare          value_compare;         
  typedef tree_t::iterator               iterator;              
  typedef tree_t::const_iterator         const_iterator;        
  typedef tree_t::reverse_iterator       reverse_iterator;      
  typedef tree_t::const_reverse_iterator const_reverse_iterator;
  typedef tree_t::size_type              size_type;             
  typedef tree_t::difference_type        difference_type;       
  typedef tree_t::allocator_type         allocator_type;        
  typedef tree_t::stored_allocator_type  stored_allocator_type; 

  // construct/copy/destruct
  explicit flat_multiset();
  explicit flat_multiset(const Pred &, 
                         const allocator_type & = allocator_type());
  template<typename InputIterator> 
    flat_multiset(InputIterator, InputIterator, const Pred & = Pred(), 
                  const allocator_type & = allocator_type());
  template<typename InputIterator> 
    flat_multiset(ordered_range_t, InputIterator, InputIterator, 
                  const Pred & = Pred(), 
                  const allocator_type & = allocator_type());
  flat_multiset(const flat_multiset &);
  flat_multiset(BOOST_RV_REF(flat_multiset));
  flat_multiset(const flat_multiset &, const allocator_type &);
  flat_multiset(BOOST_RV_REF(flat_multiset), const allocator_type &);
  flat_multiset& operator=(BOOST_COPY_ASSIGN_REF(flat_multiset));
  flat_multiset& operator=(BOOST_RV_REF(flat_multiset));

  // public member functions
  key_compare key_comp() const;
  value_compare value_comp() const;
  allocator_type get_allocator() const;
  const stored_allocator_type & get_stored_allocator() const;
  stored_allocator_type & get_stored_allocator();
  iterator begin();
  const_iterator begin() const;
  const_iterator cbegin() const;
  iterator end();
  const_iterator end() const;
  const_iterator cend() const;
  reverse_iterator rbegin();
  const_reverse_iterator rbegin() const;
  const_reverse_iterator crbegin() const;
  reverse_iterator rend();
  const_reverse_iterator rend() const;
  const_reverse_iterator crend() const;
  bool empty() const;
  size_type size() const;
  size_type max_size() const;
  void swap(flat_multiset &);
  iterator insert(insert_const_ref_type);
  iterator insert(T &);
  template<typename U> iterator insert(const U &, unspecified = 0);
  iterator insert(BOOST_RV_REF(value_type));
  iterator insert(const_iterator, insert_const_ref_type);
  iterator insert(const_iterator, T &);
  template<typename U> 
    iterator insert(const_iterator, const U &, unspecified = 0);
  iterator insert(const_iterator, BOOST_RV_REF(value_type));
  template<typename InputIterator> void insert(InputIterator, InputIterator);
  template<typename InputIterator> 
    void insert(ordered_range_t, InputIterator, InputIterator);
  template<class... Args> iterator emplace(Args &&...);
  template<class... Args> iterator emplace_hint(const_iterator, Args &&...);
  iterator erase(const_iterator);
  size_type erase(const key_type &);
  iterator erase(const_iterator, const_iterator);
  void clear();
  void shrink_to_fit();
  iterator find(const key_type &);
  const_iterator find(const key_type &) const;
  size_type count(const key_type &) const;
  iterator lower_bound(const key_type &);
  const_iterator lower_bound(const key_type &) const;
  iterator upper_bound(const key_type &);
  const_iterator upper_bound(const key_type &) const;
  std::pair< const_iterator, const_iterator > 
  equal_range(const key_type &) const;
  std::pair< iterator, iterator > equal_range(const key_type &);
  size_type capacity() const;
  void reserve(size_type);
};

Description

flat_multiset is a Sorted Associative Container that stores objects of type Key. flat_multiset is a Simple Associative Container, meaning that its value type, as well as its key type, is Key. flat_Multiset can store multiple copies of the same key value.

flat_multiset is similar to std::multiset but it's implemented like an ordered vector. This means that inserting a new element into a flat_multiset invalidates previous iterators and references

Erasing an element of a flat_multiset invalidates iterators and references pointing to elements that come after (their keys are equal or bigger) the erased element.

flat_multiset public construct/copy/destruct

  1. explicit flat_multiset();

    Effects: Default constructs an empty flat_multiset.

    Complexity: Constant.

  2. explicit flat_multiset(const Pred & comp, 
                           const allocator_type & a = allocator_type());
  3. template<typename InputIterator> 
      flat_multiset(InputIterator first, InputIterator last, 
                    const Pred & comp = Pred(), 
                    const allocator_type & a = allocator_type());
  4. template<typename InputIterator> 
      flat_multiset(ordered_range_t, InputIterator first, InputIterator last, 
                    const Pred & comp = Pred(), 
                    const allocator_type & a = allocator_type());

    Effects: Constructs an empty flat_multiset using the specified comparison object and allocator, and inserts elements from the ordered range [first ,last ). This function is more efficient than the normal range creation for ordered ranges.

    Requires: [first ,last) must be ordered according to the predicate.

    Complexity: Linear in N.

    Note: Non-standard extension.

  5. flat_multiset(const flat_multiset & x);

    Effects: Copy constructs a flat_multiset.

    Complexity: Linear in x.size().

  6. flat_multiset(BOOST_RV_REF(flat_multiset) mx);

    Effects: Move constructs a flat_multiset. Constructs *this using x's resources.

    Complexity: Constant.

    Postcondition: x is emptied.

  7. flat_multiset(const flat_multiset & x, const allocator_type & a);

    Effects: Copy constructs a flat_multiset using the specified allocator.

    Complexity: Linear in x.size().

  8. flat_multiset(BOOST_RV_REF(flat_multiset) mx, const allocator_type & a);

    Effects: Move constructs a flat_multiset using the specified allocator. Constructs *this using x's resources.

    Complexity: Constant if a == mx.get_allocator(), linear otherwise

  9. flat_multiset& operator=(BOOST_COPY_ASSIGN_REF(flat_multiset) x);

    Effects: Makes *this a copy of x.

    Complexity: Linear in x.size().

  10. flat_multiset& operator=(BOOST_RV_REF(flat_multiset) mx);

    Effects: Makes *this a copy of x.

    Complexity: Linear in x.size().

flat_multiset public member functions

  1. key_compare key_comp() const;

    Effects: Returns the comparison object out of which a was constructed.

    Complexity: Constant.

  2. value_compare value_comp() const;

    Effects: Returns an object of value_compare constructed out of the comparison object.

    Complexity: Constant.

  3. allocator_type get_allocator() const;

    Effects: Returns a copy of the Allocator that was passed to the object's constructor.

    Complexity: Constant.

  4. const stored_allocator_type & get_stored_allocator() const;
  5. stored_allocator_type & get_stored_allocator();
  6. iterator begin();

    Effects: Returns an iterator to the first element contained in the container.

    Throws: Nothing.

    Complexity: Constant.

  7. const_iterator begin() const;

    Effects: Returns a const_iterator to the first element contained in the container.

    Throws: Nothing.

    Complexity: Constant.

  8. const_iterator cbegin() const;

    Effects: Returns a const_iterator to the first element contained in the container.

    Throws: Nothing.

    Complexity: Constant.

  9. iterator end();

    Effects: Returns an iterator to the end of the container.

    Throws: Nothing.

    Complexity: Constant.

  10. const_iterator end() const;

    Effects: Returns a const_iterator to the end of the container.

    Throws: Nothing.

    Complexity: Constant.

  11. const_iterator cend() const;

    Effects: Returns a const_iterator to the end of the container.

    Throws: Nothing.

    Complexity: Constant.

  12. reverse_iterator rbegin();

    Effects: Returns a reverse_iterator pointing to the beginning of the reversed container.

    Throws: Nothing.

    Complexity: Constant.

  13. const_reverse_iterator rbegin() const;

    Effects: Returns a const_reverse_iterator pointing to the beginning of the reversed container.

    Throws: Nothing.

    Complexity: Constant.

  14. const_reverse_iterator crbegin() const;

    Effects: Returns a const_reverse_iterator pointing to the beginning of the reversed container.

    Throws: Nothing.

    Complexity: Constant.

  15. reverse_iterator rend();

    Effects: Returns a reverse_iterator pointing to the end of the reversed container.

    Throws: Nothing.

    Complexity: Constant.

  16. const_reverse_iterator rend() const;

    Effects: Returns a const_reverse_iterator pointing to the end of the reversed container.

    Throws: Nothing.

    Complexity: Constant.

  17. const_reverse_iterator crend() const;

    Effects: Returns a const_reverse_iterator pointing to the end of the reversed container.

    Throws: Nothing.

    Complexity: Constant.

  18. bool empty() const;

    Effects: Returns true if the container contains no elements.

    Throws: Nothing.

    Complexity: Constant.

  19. size_type size() const;

    Effects: Returns the number of the elements contained in the container.

    Throws: Nothing.

    Complexity: Constant.

  20. size_type max_size() const;

    Effects: Returns the largest possible size of the container.

    Throws: Nothing.

    Complexity: Constant.

  21. void swap(flat_multiset & x);

    Effects: Swaps the contents of *this and x.

    Throws: Nothing.

    Complexity: Constant.

  22. iterator insert(insert_const_ref_type x);

    Effects: Inserts x and returns the iterator pointing to the newly inserted element.

    Complexity: Logarithmic search time plus linear insertion to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  23. iterator insert(T & x);
  24. template<typename U> iterator insert(const U & u, unspecified = 0);
  25. iterator insert(BOOST_RV_REF(value_type) x);

    Effects: Inserts a new value_type move constructed from x and returns the iterator pointing to the newly inserted element.

    Complexity: Logarithmic search time plus linear insertion to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  26. iterator insert(const_iterator p, insert_const_ref_type x);

    Effects: Inserts a copy of x in the container. p is a hint pointing to where the insert should start to search.

    Returns: An iterator pointing to the element with key equivalent to the key of x.

    Complexity: Logarithmic search time (constant if x is inserted right before p) plus insertion linear to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  27. iterator insert(const_iterator position, T & x);
  28. template<typename U> 
      iterator insert(const_iterator position, const U & u, unspecified = 0);
  29. iterator insert(const_iterator position, BOOST_RV_REF(value_type) x);

    Effects: Inserts a new value move constructed from x in the container. p is a hint pointing to where the insert should start to search.

    Returns: An iterator pointing to the element with key equivalent to the key of x.

    Complexity: Logarithmic search time (constant if x is inserted right before p) plus insertion linear to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  30. template<typename InputIterator> 
      void insert(InputIterator first, InputIterator last);

    Requires: first, last are not iterators into *this.

    Effects: inserts each element from the range [first,last) .

    Complexity: At most N log(size()+N) (N is the distance from first to last) search time plus N*size() insertion time.

    Note: If an element is inserted it might invalidate elements.

  31. template<typename InputIterator> 
      void insert(ordered_range_t, InputIterator first, InputIterator last);

    Requires: first, last are not iterators into *this and must be ordered according to the predicate.

    Effects: inserts each element from the range [first,last) .This function is more efficient than the normal range creation for ordered ranges.

    Complexity: At most N log(size()+N) (N is the distance from first to last) search time plus N*size() insertion time.

    Note: Non-standard extension. If an element is inserted it might invalidate elements.

  32. template<class... Args> iterator emplace(Args &&... args);

    Effects: Inserts an object of type T constructed with std::forward<Args>(args)... and returns the iterator pointing to the newly inserted element.

    Complexity: Logarithmic search time plus linear insertion to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  33. template<class... Args> 
      iterator emplace_hint(const_iterator hint, Args &&... args);

    Effects: Inserts an object of type T constructed with std::forward<Args>(args)... in the container. p is a hint pointing to where the insert should start to search.

    Returns: An iterator pointing to the element with key equivalent to the key of x.

    Complexity: Logarithmic search time (constant if x is inserted right before p) plus insertion linear to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  34. iterator erase(const_iterator position);

    Effects: Erases the element pointed to by position.

    Returns: Returns an iterator pointing to the element immediately following q prior to the element being erased. If no such element exists, returns end().

    Complexity: Linear to the elements with keys bigger than position

    Note: Invalidates elements with keys not less than the erased element.

  35. size_type erase(const key_type & x);

    Effects: Erases all elements in the container with key equivalent to x.

    Returns: Returns the number of erased elements.

    Complexity: Logarithmic search time plus erasure time linear to the elements with bigger keys.

  36. iterator erase(const_iterator first, const_iterator last);

    Effects: Erases all the elements in the range [first, last).

    Returns: Returns last.

    Complexity: size()*N where N is the distance from first to last.

    Complexity: Logarithmic search time plus erasure time linear to the elements with bigger keys.

  37. void clear();

    Effects: erase(a.begin(),a.end()).

    Postcondition: size() == 0.

    Complexity: linear in size().

  38. void shrink_to_fit();
    Effects: Tries to deallocate the excess of memory created

    Throws: If memory allocation throws, or T's copy constructor throws.

    Complexity: Linear to size().

  39. iterator find(const key_type & x);

    Returns: An iterator pointing to an element with the key equivalent to x, or end() if such an element is not found.

    Complexity: Logarithmic.

  40. const_iterator find(const key_type & x) const;

    Returns: A const_iterator pointing to an element with the key equivalent to x, or end() if such an element is not found.

    Complexity: Logarithmic.s

  41. size_type count(const key_type & x) const;

    Returns: The number of elements with key equivalent to x.

    Complexity: log(size())+count(k)

  42. iterator lower_bound(const key_type & x);

    Returns: An iterator pointing to the first element with key not less than k, or a.end() if such an element is not found.

    Complexity: Logarithmic

  43. const_iterator lower_bound(const key_type & x) const;

    Returns: A const iterator pointing to the first element with key not less than k, or a.end() if such an element is not found.

    Complexity: Logarithmic

  44. iterator upper_bound(const key_type & x);

    Returns: An iterator pointing to the first element with key not less than x, or end() if such an element is not found.

    Complexity: Logarithmic

  45. const_iterator upper_bound(const key_type & x) const;

    Returns: A const iterator pointing to the first element with key not less than x, or end() if such an element is not found.

    Complexity: Logarithmic

  46. std::pair< const_iterator, const_iterator > 
    equal_range(const key_type & x) const;

    Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).

    Complexity: Logarithmic

  47. std::pair< iterator, iterator > equal_range(const key_type & x);

    Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).

    Complexity: Logarithmic

  48. size_type capacity() const;

    Effects: Number of elements for which memory has been allocated. capacity() is always greater than or equal to size().

    Throws: Nothing.

    Complexity: Constant.

  49. void reserve(size_type count);

    Effects: If n is less than or equal to capacity(), this call has no effect. Otherwise, it is a request for allocation of additional memory. If the request is successful, then capacity() is greater than or equal to n; otherwise, capacity() is unchanged. In either case, size() is unchanged.

    Throws: If memory allocation allocation throws or T's copy constructor throws.

    Note: If capacity() is less than "count", iterators and references to to values might be invalidated.


PrevUpHomeNext