In Files

Array

Arrays are ordered, integer-indexed collections of any object. Array indexing starts at 0, as in C or Java. A negative index is assumed to be relative to the end of the array—that is, an index of -1 indicates the last element of the array, -2 is the next to last element in the array, and so on.

Public Class Methods

[](*args) click to toggle source

Returns a new array populated with the given objects.

Array.[]( 1, 'a', /^A/ )
Array[ 1, 'a', /^A/ ]
[ 1, 'a', /^A/ ]
 
               static VALUE
rb_ary_s_create(int argc, VALUE *argv, VALUE klass)
{
    VALUE ary = ary_new(klass, argc);
    if (argc > 0 && argv) {
        MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc);
        ARY_SET_LEN(ary, argc);
    }

    return ary;
}
            
new(size=0, obj=nil) click to toggle source
new(array)
new(size) {|index| block }

Returns a new array. In the first form, the new array is empty. In the second it is created with size copies of obj (that is, size references to the same obj). The third form creates a copy of the array passed as a parameter (the array is generated by calling #to_ary on the parameter). In the last form, an array of the given size is created. Each element in this array is calculated by passing the element’s index to the given block and storing the return value.

Array.new
Array.new(2)
Array.new(5, "A")

# only one copy of the object is created
a = Array.new(2, Hash.new)
a[0]['cat'] = 'feline'
a
a[1]['cat'] = 'Felix'
a

# here multiple copies are created
a = Array.new(2) { Hash.new }
a[0]['cat'] = 'feline'
a

squares = Array.new(5) {|i| i*i}
squares

copy = Array.new(squares)
 
               static VALUE
rb_ary_initialize(int argc, VALUE *argv, VALUE ary)
{
    long len;
    VALUE size, val;

    rb_ary_modify(ary);
    if (argc == 0) {
        if (ARY_OWNS_HEAP_P(ary) && RARRAY_PTR(ary)) {
            xfree(RARRAY_PTR(ary));
        }
        rb_ary_unshare_safe(ary);
        FL_SET_EMBED(ary);
        ARY_SET_EMBED_LEN(ary, 0);
        if (rb_block_given_p()) {
            rb_warning("given block not used");
        }
        return ary;
    }
    rb_scan_args(argc, argv, "02", &size, &val);
    if (argc == 1 && !FIXNUM_P(size)) {
        val = rb_check_array_type(size);
        if (!NIL_P(val)) {
            rb_ary_replace(ary, val);
            return ary;
        }
    }

    len = NUM2LONG(size);
    if (len < 0) {
        rb_raise(rb_eArgError, "negative array size");
    }
    if (len > ARY_MAX_SIZE) {
        rb_raise(rb_eArgError, "array size too big");
    }
    rb_ary_modify(ary);
    ary_resize_capa(ary, len);
    if (rb_block_given_p()) {
        long i;

        if (argc == 2) {
            rb_warn("block supersedes default value argument");
        }
        for (i=0; i<len; i++) {
            rb_ary_store(ary, i, rb_yield(LONG2NUM(i)));
            ARY_SET_LEN(ary, i + 1);
        }
    }
    else {
        memfill(RARRAY_PTR(ary), len, val);
        ARY_SET_LEN(ary, len);
    }
    return ary;
}
            
try_convert(obj) → array or nil click to toggle source

Try to convert obj into an array, using to_ary method. Returns converted array or nil if obj cannot be converted for any reason. This method can be used to check if an argument is an array.

Array.try_convert([1])   #=> [1]
Array.try_convert("1")   #=> nil

if tmp = Array.try_convert(arg)
  # the argument is an array
elsif tmp = String.try_convert(arg)
  # the argument is a string
end
 
               static VALUE
rb_ary_s_try_convert(VALUE dummy, VALUE ary)
{
    return rb_check_array_type(ary);
}
            

Public Instance Methods

ary & other_ary → new_ary click to toggle source

Set Intersection—Returns a new array containing elements common to the two arrays, with no duplicates.

[ 1, 1, 3, 5 ] & [ 1, 2, 3 ]   #=> [ 1, 3 ]
 
               static VALUE
rb_ary_and(VALUE ary1, VALUE ary2)
{
    VALUE hash, ary3, v;
    st_data_t vv;
    long i;

    ary2 = to_ary(ary2);
    ary3 = rb_ary_new2(RARRAY_LEN(ary1) < RARRAY_LEN(ary2) ?
            RARRAY_LEN(ary1) : RARRAY_LEN(ary2));
    hash = ary_make_hash(ary2);

    if (RHASH_EMPTY_P(hash))
        return ary3;

    for (i=0; i<RARRAY_LEN(ary1); i++) {
        vv = (st_data_t)(v = rb_ary_elt(ary1, i));
        if (st_delete(RHASH_TBL(hash), &vv, 0)) {
            rb_ary_push(ary3, v);
        }
    }
    ary_recycle_hash(hash);

    return ary3;
}
            
ary * int → new_ary click to toggle source
ary * str → new_string

Repetition—With a String argument, equivalent to self.join(str). Otherwise, returns a new array built by concatenating the int copies of self.

[ 1, 2, 3 ] * 3    #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ]
[ 1, 2, 3 ] * ","  #=> "1,2,3"
 
               static VALUE
rb_ary_times(VALUE ary, VALUE times)
{
    VALUE ary2, tmp, *ptr, *ptr2;
    long t, len;

    tmp = rb_check_string_type(times);
    if (!NIL_P(tmp)) {
        return rb_ary_join(ary, tmp);
    }

    len = NUM2LONG(times);
    if (len == 0) {
        ary2 = ary_new(rb_obj_class(ary), 0);
        goto out;
    }
    if (len < 0) {
        rb_raise(rb_eArgError, "negative argument");
    }
    if (ARY_MAX_SIZE/len < RARRAY_LEN(ary)) {
        rb_raise(rb_eArgError, "argument too big");
    }
    len *= RARRAY_LEN(ary);

    ary2 = ary_new(rb_obj_class(ary), len);
    ARY_SET_LEN(ary2, len);

    ptr = RARRAY_PTR(ary);
    ptr2 = RARRAY_PTR(ary2);
    t = RARRAY_LEN(ary);
    if (0 < t) {
        MEMCPY(ptr2, ptr, VALUE, t);
        while (t <= len/2) {
            MEMCPY(ptr2+t, ptr2, VALUE, t);
            t *= 2;
        }
        if (t < len) {
            MEMCPY(ptr2+t, ptr2, VALUE, len-t);
        }
    }
  out:
    OBJ_INFECT(ary2, ary);

    return ary2;
}
            
ary + other_ary → new_ary click to toggle source

Concatenation—Returns a new array built by concatenating the two arrays together to produce a third array.

[ 1, 2, 3 ] + [ 4, 5 ]    #=> [ 1, 2, 3, 4, 5 ]
 
               VALUE
rb_ary_plus(VALUE x, VALUE y)
{
    VALUE z;
    long len;

    y = to_ary(y);
    len = RARRAY_LEN(x) + RARRAY_LEN(y);
    z = rb_ary_new2(len);
    MEMCPY(RARRAY_PTR(z), RARRAY_PTR(x), VALUE, RARRAY_LEN(x));
    MEMCPY(RARRAY_PTR(z) + RARRAY_LEN(x), RARRAY_PTR(y), VALUE, RARRAY_LEN(y));
    ARY_SET_LEN(z, len);
    return z;
}
            
ary - other_ary → new_ary click to toggle source

Array Difference---Returns a new array that is a copy of the original array, removing any items that also appear in other_ary. (If you need set-like behavior, see the library class Set.)

[ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ]  #=>  [ 3, 3, 5 ]
 
               static VALUE
rb_ary_diff(VALUE ary1, VALUE ary2)
{
    VALUE ary3;
    volatile VALUE hash;
    long i;

    hash = ary_make_hash(to_ary(ary2));
    ary3 = rb_ary_new();

    for (i=0; i<RARRAY_LEN(ary1); i++) {
        if (st_lookup(RHASH_TBL(hash), RARRAY_PTR(ary1)[i], 0)) continue;
        rb_ary_push(ary3, rb_ary_elt(ary1, i));
    }
    ary_recycle_hash(hash);
    return ary3;
}
            
ary << obj → ary click to toggle source

Append—Pushes the given object on to the end of this array. This expression returns the array itself, so several appends may be chained together.

[ 1, 2 ] << "c" << "d" << [ 3, 4 ]
        #=>  [ 1, 2, "c", "d", [ 3, 4 ] ]
 
               VALUE
rb_ary_push(VALUE ary, VALUE item)
{
    rb_ary_modify(ary);
    return rb_ary_push_1(ary, item);
}
            
ary <=> other_ary → -1, 0, +1 or nil click to toggle source

Comparison—Returns an integer (-1, 0, or +1) if this array is less than, equal to, or greater than other_ary. Each object in each array is compared (using <=>). If any value isn’t equal, then that inequality is the return value. If all the values found are equal, then the return is based on a comparison of the array lengths. Thus, two arrays are “equal” according to Array#<=> if and only if they have the same length and the value of each element is equal to the value of the corresponding element in the other array.

[ "a", "a", "c" ]    <=> [ "a", "b", "c" ]   #=> -1
[ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ]            #=> +1
 
               VALUE
rb_ary_cmp(VALUE ary1, VALUE ary2)
{
    long len;
    VALUE v;

    ary2 = rb_check_array_type(ary2);
    if (NIL_P(ary2)) return Qnil;
    if (ary1 == ary2) return INT2FIX(0);
    v = rb_exec_recursive_paired(recursive_cmp, ary1, ary2, ary2);
    if (v != Qundef) return v;
    len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2);
    if (len == 0) return INT2FIX(0);
    if (len > 0) return INT2FIX(1);
    return INT2FIX(-1);
}
            
ary == other_ary → bool click to toggle source

Equality—Two arrays are equal if they contain the same number of elements and if each element is equal to (according to Object.==) the corresponding element in the other array.

[ "a", "c" ]    == [ "a", "c", 7 ]     #=> false
[ "a", "c", 7 ] == [ "a", "c", 7 ]     #=> true
[ "a", "c", 7 ] == [ "a", "d", "f" ]   #=> false
 
               static VALUE
rb_ary_equal(VALUE ary1, VALUE ary2)
{
    if (ary1 == ary2) return Qtrue;
    if (TYPE(ary2) != T_ARRAY) {
        if (!rb_respond_to(ary2, rb_intern("to_ary"))) {
            return Qfalse;
        }
        return rb_equal(ary2, ary1);
    }
    if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
    return rb_exec_recursive_paired(recursive_equal, ary1, ary2, ary2);
}
            
ary[index] → obj or nil click to toggle source
ary[start, length] → new_ary or nil
ary[range] → new_ary or nil
slice(index) → obj or nil
slice(start, length) → new_ary or nil
slice(range) → new_ary or nil

Element Reference—Returns the element at index, or returns a subarray starting at start and continuing for length elements, or returns a subarray specified by range. Negative indices count backward from the end of the array (-1 is the last element). Returns nil if the index (or starting index) are out of range.

a = [ "a", "b", "c", "d", "e" ]
a[2] +  a[0] + a[1]    #=> "cab"
a[6]                   #=> nil
a[1, 2]                #=> [ "b", "c" ]
a[1..3]                #=> [ "b", "c", "d" ]
a[4..7]                #=> [ "e" ]
a[6..10]               #=> nil
a[-3, 3]               #=> [ "c", "d", "e" ]
# special cases
a[5]                   #=> nil
a[5, 1]                #=> []
a[5..10]               #=> []
 
               VALUE
rb_ary_aref(int argc, VALUE *argv, VALUE ary)
{
    VALUE arg;
    long beg, len;

    if (argc == 2) {
        beg = NUM2LONG(argv[0]);
        len = NUM2LONG(argv[1]);
        if (beg < 0) {
            beg += RARRAY_LEN(ary);
        }
        return rb_ary_subseq(ary, beg, len);
    }
    if (argc != 1) {
        rb_scan_args(argc, argv, "11", 0, 0);
    }
    arg = argv[0];
    /* special case - speeding up */
    if (FIXNUM_P(arg)) {
        return rb_ary_entry(ary, FIX2LONG(arg));
    }
    /* check if idx is Range */
    switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) {
      case Qfalse:
        break;
      case Qnil:
        return Qnil;
      default:
        return rb_ary_subseq(ary, beg, len);
    }
    return rb_ary_entry(ary, NUM2LONG(arg));
}
            
ary[index] = obj → obj click to toggle source
ary[start, length] = obj or other_ary or nil → obj or other_ary or nil
ary[range] = obj or other_ary or nil → obj or other_ary or nil

Element Assignment—Sets the element at index, or replaces a subarray starting at start and continuing for length elements, or replaces a subarray specified by range. If indices are greater than the current capacity of the array, the array grows automatically. A negative indices will count backward from the end of the array. Inserts elements if length is zero. An IndexError is raised if a negative index points past the beginning of the array. See also Array#push, and Array#unshift.

a = Array.new
a[4] = "4";                 #=> [nil, nil, nil, nil, "4"]
a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"]
a[1..2] = [ 1, 2 ]          #=> ["a", 1, 2, nil, "4"]
a[0, 2] = "?"               #=> ["?", 2, nil, "4"]
a[0..2] = "A"               #=> ["A", "4"]
a[-1]   = "Z"               #=> ["A", "Z"]
a[1..-1] = nil              #=> ["A", nil]
a[1..-1] = []               #=> ["A"]
 
               static VALUE
rb_ary_aset(int argc, VALUE *argv, VALUE ary)
{
    long offset, beg, len;

    if (argc == 3) {
        rb_ary_modify_check(ary);
        beg = NUM2LONG(argv[0]);
        len = NUM2LONG(argv[1]);
        rb_ary_splice(ary, beg, len, argv[2]);
        return argv[2];
    }
    if (argc != 2) {
        rb_raise(rb_eArgError, "wrong number of arguments (%d for 2)", argc);
    }
    rb_ary_modify_check(ary);
    if (FIXNUM_P(argv[0])) {
        offset = FIX2LONG(argv[0]);
        goto fixnum;
    }
    if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) {
        /* check if idx is Range */
        rb_ary_splice(ary, beg, len, argv[1]);
        return argv[1];
    }

    offset = NUM2LONG(argv[0]);
fixnum:
    rb_ary_store(ary, offset, argv[1]);
    return argv[1];
}
            
assoc(obj) → new_ary or nil click to toggle source

Searches through an array whose elements are also arrays comparing obj with the first element of each contained array using obj.==. Returns the first contained array that matches (that is, the first associated array), or nil if no match is found. See also Array#rassoc.

s1 = [ "colors", "red", "blue", "green" ]
s2 = [ "letters", "a", "b", "c" ]
s3 = "foo"
a  = [ s1, s2, s3 ]
a.assoc("letters")  #=> [ "letters", "a", "b", "c" ]
a.assoc("foo")      #=> nil
 
               VALUE
rb_ary_assoc(VALUE ary, VALUE key)
{
    long i;
    VALUE v;

    for (i = 0; i < RARRAY_LEN(ary); ++i) {
        v = rb_check_array_type(RARRAY_PTR(ary)[i]);
        if (!NIL_P(v) && RARRAY_LEN(v) > 0 &&
            rb_equal(RARRAY_PTR(v)[0], key))
            return v;
    }
    return Qnil;
}
            
at(index) → obj or nil click to toggle source

Returns the element at index. A negative index counts from the end of self. Returns nil if the index is out of range. See also Array#[].

a = [ "a", "b", "c", "d", "e" ]
a.at(0)     #=> "a"
a.at(-1)    #=> "e"
 
               static VALUE
rb_ary_at(VALUE ary, VALUE pos)
{
    return rb_ary_entry(ary, NUM2LONG(pos));
}
            
clear → ary click to toggle source

Removes all elements from self.

a = [ "a", "b", "c", "d", "e" ]
a.clear    #=> [ ]
 
               VALUE
rb_ary_clear(VALUE ary)
{
    rb_ary_modify_check(ary);
    ARY_SET_LEN(ary, 0);
    if (ARY_SHARED_P(ary)) {
        if (!ARY_EMBED_P(ary)) {
            rb_ary_unshare(ary);
            FL_SET_EMBED(ary);
        }
    }
    else if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
        ary_resize_capa(ary, ARY_DEFAULT_SIZE * 2);
    }
    return ary;
}
            
collect {|item| block } → new_ary click to toggle source
map {|item| block } → new_ary
collect → an_enumerator
map → an_enumerator

Invokes block once for each element of self. Creates a new array containing the values returned by the block. See also Enumerable#collect.

If no block is given, an enumerator is returned instead.

a = [ "a", "b", "c", "d" ]
a.collect {|x| x + "!" }   #=> ["a!", "b!", "c!", "d!"]
a                          #=> ["a", "b", "c", "d"]
 
               static VALUE
rb_ary_collect(VALUE ary)
{
    long i;
    VALUE collect;

    RETURN_ENUMERATOR(ary, 0, 0);
    collect = rb_ary_new2(RARRAY_LEN(ary));
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        rb_ary_push(collect, rb_yield(RARRAY_PTR(ary)[i]));
    }
    return collect;
}
            
collect! {|item| block } → ary click to toggle source
map! {|item| block } → ary
collect → an_enumerator
map → an_enumerator

Invokes the block once for each element of self, replacing the element with the value returned by block. See also Enumerable#collect.

If no block is given, an enumerator is returned instead.

a = [ "a", "b", "c", "d" ]
a.collect! {|x| x + "!" }
a             #=>  [ "a!", "b!", "c!", "d!" ]
 
               static VALUE
rb_ary_collect_bang(VALUE ary)
{
    long i;

    RETURN_ENUMERATOR(ary, 0, 0);
    rb_ary_modify(ary);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        rb_ary_store(ary, i, rb_yield(RARRAY_PTR(ary)[i]));
    }
    return ary;
}
            
combination(n) { |c| block } → ary click to toggle source
combination(n) → an_enumerator

When invoked with a block, yields all combinations of length n of elements from ary and then returns ary itself. The implementation makes no guarantees about the order in which the combinations are yielded.

If no block is given, an enumerator is returned instead.

Examples:

a = [1, 2, 3, 4]
a.combination(1).to_a  #=> [[1],[2],[3],[4]]
a.combination(2).to_a  #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
a.combination(3).to_a  #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
a.combination(4).to_a  #=> [[1,2,3,4]]
a.combination(0).to_a  #=> [[]] # one combination of length 0
a.combination(5).to_a  #=> []   # no combinations of length 5
 
               static VALUE
rb_ary_combination(VALUE ary, VALUE num)
{
    long n, i, len;

    n = NUM2LONG(num);
    RETURN_ENUMERATOR(ary, 1, &num);
    len = RARRAY_LEN(ary);
    if (n < 0 || len < n) {
        /* yield nothing */
    }
    else if (n == 0) {
        rb_yield(rb_ary_new2(0));
    }
    else if (n == 1) {
        for (i = 0; i < len; i++) {
            rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
        }
    }
    else {
        volatile VALUE t0 = tmpbuf(n+1, sizeof(long));
        long *stack = (long*)RSTRING_PTR(t0);
        volatile VALUE cc = tmpary(n);
        VALUE *chosen = RARRAY_PTR(cc);
        long lev = 0;

        MEMZERO(stack, long, n);
        stack[0] = -1;
        for (;;) {
            chosen[lev] = RARRAY_PTR(ary)[stack[lev+1]];
            for (lev++; lev < n; lev++) {
                chosen[lev] = RARRAY_PTR(ary)[stack[lev+1] = stack[lev]+1];
            }
            rb_yield(rb_ary_new4(n, chosen));
            if (RBASIC(t0)->klass) {
                rb_raise(rb_eRuntimeError, "combination reentered");
            }
            do {
                if (lev == 0) goto done;
                stack[lev--]++;
            } while (stack[lev+1]+n == len+lev+1);
        }
    done:
        tmpbuf_discard(t0);
        tmpary_discard(cc);
    }
    return ary;
}
            
compact → new_ary click to toggle source

Returns a copy of self with all nil elements removed.

[ "a", nil, "b", nil, "c", nil ].compact
                  #=> [ "a", "b", "c" ]
 
               static VALUE
rb_ary_compact(VALUE ary)
{
    ary = rb_ary_dup(ary);
    rb_ary_compact_bang(ary);
    return ary;
}
            
compact! → ary or nil click to toggle source

Removes nil elements from the array. Returns nil if no changes were made, otherwise returns ary.

[ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ]
[ "a", "b", "c" ].compact!           #=> nil
 
               static VALUE
rb_ary_compact_bang(VALUE ary)
{
    VALUE *p, *t, *end;
    long n;

    rb_ary_modify(ary);
    p = t = RARRAY_PTR(ary);
    end = p + RARRAY_LEN(ary);

    while (t < end) {
        if (NIL_P(*t)) t++;
        else *p++ = *t++;
    }
    n = p - RARRAY_PTR(ary);
    if (RARRAY_LEN(ary) == n) {
        return Qnil;
    }
    ARY_SET_LEN(ary, n);
    if (n * 2 < ARY_CAPA(ary) && ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
        ary_resize_capa(ary, n * 2);
    }

    return ary;
}
            
concat(other_ary) → ary click to toggle source

Appends the elements of other_ary to self.

[ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ]
 
               VALUE
rb_ary_concat(VALUE x, VALUE y)
{
    rb_ary_modify_check(x);
    y = to_ary(y);
    if (RARRAY_LEN(y) > 0) {
        rb_ary_splice(x, RARRAY_LEN(x), 0, y);
    }
    return x;
}
            
count → int click to toggle source
count(obj) → int
count { |item| block } → int

Returns the number of elements. If an argument is given, counts the number of elements which equals to obj. If a block is given, counts the number of elements yielding a true value.

ary = [1, 2, 4, 2]
ary.count             #=> 4
ary.count(2)          #=> 2
ary.count{|x|x%2==0}  #=> 3
 
               static VALUE
rb_ary_count(int argc, VALUE *argv, VALUE ary)
{
    long n = 0;

    if (argc == 0) {
        VALUE *p, *pend;

        if (!rb_block_given_p())
            return LONG2NUM(RARRAY_LEN(ary));

        for (p = RARRAY_PTR(ary), pend = p + RARRAY_LEN(ary); p < pend; p++) {
            if (RTEST(rb_yield(*p))) n++;
        }
    }
    else {
        VALUE obj, *p, *pend;

        rb_scan_args(argc, argv, "1", &obj);
        if (rb_block_given_p()) {
            rb_warn("given block not used");
        }
        for (p = RARRAY_PTR(ary), pend = p + RARRAY_LEN(ary); p < pend; p++) {
            if (rb_equal(*p, obj)) n++;
        }
    }

    return LONG2NUM(n);
}
            
cycle(n=nil) {|obj| block } → nil click to toggle source
cycle(n=nil) → an_enumerator

Calls block for each element repeatedly n times or forever if none or nil is given. If a non-positive number is given or the array is empty, does nothing. Returns nil if the loop has finished without getting interrupted.

If no block is given, an enumerator is returned instead.

a = ["a", "b", "c"]
a.cycle {|x| puts x }  # print, a, b, c, a, b, c,.. forever.
a.cycle(2) {|x| puts x }  # print, a, b, c, a, b, c.
 
               static VALUE
rb_ary_cycle(int argc, VALUE *argv, VALUE ary)
{
    long n, i;
    VALUE nv = Qnil;

    rb_scan_args(argc, argv, "01", &nv);

    RETURN_ENUMERATOR(ary, argc, argv);
    if (NIL_P(nv)) {
        n = -1;
    }
    else {
        n = NUM2LONG(nv);
        if (n <= 0) return Qnil;
    }

    while (RARRAY_LEN(ary) > 0 && (n < 0 || 0 < n--)) {
        for (i=0; i<RARRAY_LEN(ary); i++) {
            rb_yield(RARRAY_PTR(ary)[i]);
        }
    }
    return Qnil;
}
            
delete(obj) → obj or nil click to toggle source
delete(obj) { block } → obj or nil

Deletes items from self that are equal to obj. If any items are found, returns obj. If the item is not found, returns nil. If the optional code block is given, returns the result of block if the item is not found. (To remove nil elements and get an informative return value, use compact!)

a = [ "a", "b", "b", "b", "c" ]
a.delete("b")                   #=> "b"
a                               #=> ["a", "c"]
a.delete("z")                   #=> nil
a.delete("z") { "not found" }   #=> "not found"
 
               VALUE
rb_ary_delete(VALUE ary, VALUE item)
{
    VALUE v = item;
    long i1, i2;

    for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
        VALUE e = RARRAY_PTR(ary)[i1];

        if (rb_equal(e, item)) {
            v = e;
            continue;
        }
        if (i1 != i2) {
            rb_ary_store(ary, i2, e);
        }
        i2++;
    }
    if (RARRAY_LEN(ary) == i2) {
        if (rb_block_given_p()) {
            return rb_yield(item);
        }
        return Qnil;
    }

    rb_ary_modify(ary);
    if (RARRAY_LEN(ary) > i2) {
        ARY_SET_LEN(ary, i2);
        if (i2 * 2 < ARY_CAPA(ary) &&
            ARY_CAPA(ary) > ARY_DEFAULT_SIZE) {
            ary_resize_capa(ary, i2*2);
        }
    }

    return v;
}
            
delete_at(index) → obj or nil click to toggle source

Deletes the element at the specified index, returning that element, or nil if the index is out of range. See also Array#slice!.

a = %w( ant bat cat dog )
a.delete_at(2)    #=> "cat"
a                 #=> ["ant", "bat", "dog"]
a.delete_at(99)   #=> nil
 
               static VALUE
rb_ary_delete_at_m(VALUE ary, VALUE pos)
{
    return rb_ary_delete_at(ary, NUM2LONG(pos));
}
            
delete_if {|item| block } → ary click to toggle source
delete_if → an_enumerator

Deletes every element of self for which block evaluates to true. The array is changed instantly every time the block is called and not after the iteration is over. See also Array#reject!

If no block is given, an enumerator is returned instead.

a = [ "a", "b", "c" ]
a.delete_if {|x| x >= "b" }   #=> ["a"]
 
               static VALUE
rb_ary_delete_if(VALUE ary)
{
    RETURN_ENUMERATOR(ary, 0, 0);
    ary_reject_bang(ary);
    return ary;
}
            
drop(n) → new_ary click to toggle source

Drops first n elements from ary and returns the rest of the elements in an array.

a = [1, 2, 3, 4, 5, 0]
a.drop(3)             #=> [4, 5, 0]
 
               static VALUE
rb_ary_drop(VALUE ary, VALUE n)
{
    VALUE result;
    long pos = NUM2LONG(n);
    if (pos < 0) {
        rb_raise(rb_eArgError, "attempt to drop negative size");
    }

    result = rb_ary_subseq(ary, pos, RARRAY_LEN(ary));
    if (result == Qnil) result = rb_ary_new();
    return result;
}
            
drop_while {|arr| block } → new_ary click to toggle source
drop_while → an_enumerator

Drops elements up to, but not including, the first element for which the block returns nil or false and returns an array containing the remaining elements.

If no block is given, an enumerator is returned instead.

a = [1, 2, 3, 4, 5, 0]
a.drop_while {|i| i < 3 }   #=> [3, 4, 5, 0]
 
               static VALUE
rb_ary_drop_while(VALUE ary)
{
    long i;

    RETURN_ENUMERATOR(ary, 0, 0);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break;
    }
    return rb_ary_drop(ary, LONG2FIX(i));
}
            
each {|item| block } → ary click to toggle source
each → an_enumerator

Calls block once for each element in self, passing that element as a parameter.

If no block is given, an enumerator is returned instead.

a = [ "a", "b", "c" ]
a.each {|x| print x, " -- " }

produces:

a -- b -- c --
 
               VALUE
rb_ary_each(VALUE array)
{
    long i;
    volatile VALUE ary = array;

    RETURN_ENUMERATOR(ary, 0, 0);
    for (i=0; i<RARRAY_LEN(ary); i++) {
        rb_yield(RARRAY_PTR(ary)[i]);
    }
    return ary;
}
            
each_index {|index| block } → ary click to toggle source
each_index → an_enumerator

Same as Array#each, but passes the index of the element instead of the element itself.

If no block is given, an enumerator is returned instead.

a = [ "a", "b", "c" ]
a.each_index {|x| print x, " -- " }

produces:

0 -- 1 -- 2 --
 
               static VALUE
rb_ary_each_index(VALUE ary)
{
    long i;
    RETURN_ENUMERATOR(ary, 0, 0);

    for (i=0; i<RARRAY_LEN(ary); i++) {
        rb_yield(LONG2NUM(i));
    }
    return ary;
}
            
empty? → true or false click to toggle source

Returns true if self contains no elements.

[].empty?   #=> true
 
               static VALUE
rb_ary_empty_p(VALUE ary)
{
    if (RARRAY_LEN(ary) == 0)
        return Qtrue;
    return Qfalse;
}
            
eql?(other) → true or false click to toggle source

Returns true if self and other are the same object, or are both arrays with the same content.

 
               static VALUE
rb_ary_eql(VALUE ary1, VALUE ary2)
{
    if (ary1 == ary2) return Qtrue;
    if (TYPE(ary2) != T_ARRAY) return Qfalse;
    if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
    return rb_exec_recursive_paired(recursive_eql, ary1, ary2, ary2);
}
            
fetch(index) → obj click to toggle source
fetch(index, default ) → obj
fetch(index) {|index| block } → obj

Tries to return the element at position index. If the index lies outside the array, the first form throws an IndexError exception, the second form returns default, and the third form returns the value of invoking the block, passing in the index. Negative values of index count from the end of the array.

a = [ 11, 22, 33, 44 ]
a.fetch(1)               #=> 22
a.fetch(-1)              #=> 44
a.fetch(4, 'cat')        #=> "cat"
a.fetch(4) { |i| i*i }   #=> 16
 
               static VALUE
rb_ary_fetch(int argc, VALUE *argv, VALUE ary)
{
    VALUE pos, ifnone;
    long block_given;
    long idx;

    rb_scan_args(argc, argv, "11", &pos, &ifnone);
    block_given = rb_block_given_p();
    if (block_given && argc == 2) {
        rb_warn("block supersedes default value argument");
    }
    idx = NUM2LONG(pos);

    if (idx < 0) {
        idx +=  RARRAY_LEN(ary);
    }
    if (idx < 0 || RARRAY_LEN(ary) <= idx) {
        if (block_given) return rb_yield(pos);
        if (argc == 1) {
            rb_raise(rb_eIndexError, "index %ld outside of array bounds: %ld...%ld",
                        idx - (idx < 0 ? RARRAY_LEN(ary) : 0), -RARRAY_LEN(ary), RARRAY_LEN(ary));
        }
        return ifnone;
    }
    return RARRAY_PTR(ary)[idx];
}
            
fill(obj) → ary click to toggle source
fill(obj, start [, length]) → ary
fill(obj, range ) → ary
fill {|index| block } → ary
fill(start [, length] ) {|index| block } → ary
fill(range) {|index| block } → ary

The first three forms set the selected elements of self (which may be the entire array) to obj. A start of nil is equivalent to zero. A length of nil is equivalent to self.length. The last three forms fill the array with the value of the block. The block is passed the absolute index of each element to be filled. Negative values of start count from the end of the array.

a = [ "a", "b", "c", "d" ]
a.fill("x")              #=> ["x", "x", "x", "x"]
a.fill("z", 2, 2)        #=> ["x", "x", "z", "z"]
a.fill("y", 0..1)        #=> ["y", "y", "z", "z"]
a.fill {|i| i*i}         #=> [0, 1, 4, 9]
a.fill(-2) {|i| i*i*i}   #=> [0, 1, 8, 27]
 
               static VALUE
rb_ary_fill(int argc, VALUE *argv, VALUE ary)
{
    VALUE item, arg1, arg2;
    long beg = 0, end = 0, len = 0;
    VALUE *p, *pend;
    int block_p = FALSE;

    if (rb_block_given_p()) {
        block_p = TRUE;
        rb_scan_args(argc, argv, "02", &arg1, &arg2);
        argc += 1;             /* hackish */
    }
    else {
        rb_scan_args(argc, argv, "12", &item, &arg1, &arg2);
    }
    switch (argc) {
      case 1:
        beg = 0;
        len = RARRAY_LEN(ary);
        break;
      case 2:
        if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) {
            break;
        }
        /* fall through */
      case 3:
        beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1);
        if (beg < 0) {
            beg = RARRAY_LEN(ary) + beg;
            if (beg < 0) beg = 0;
        }
        len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2);
        break;
    }
    rb_ary_modify(ary);
    if (len < 0) {
        return ary;
    }
    if (beg >= ARY_MAX_SIZE || len > ARY_MAX_SIZE - beg) {
        rb_raise(rb_eArgError, "argument too big");
    }
    end = beg + len;
    if (RARRAY_LEN(ary) < end) {
        if (end >= ARY_CAPA(ary)) {
            ary_resize_capa(ary, end);
        }
        rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), end - RARRAY_LEN(ary));
        ARY_SET_LEN(ary, end);
    }

    if (block_p) {
        VALUE v;
        long i;

        for (i=beg; i<end; i++) {
            v = rb_yield(LONG2NUM(i));
            if (i>=RARRAY_LEN(ary)) break;
            RARRAY_PTR(ary)[i] = v;
        }
    }
    else {
        p = RARRAY_PTR(ary) + beg;
        pend = p + len;
        while (p < pend) {
            *p++ = item;
        }
    }
    return ary;
}
            
index(obj) → int or nil click to toggle source
index {|item| block} → int or nil
index → an_enumerator

Returns the index of the first object in self such that the object is == to obj. If a block is given instead of an argument, returns index of first object for which block is true. Returns nil if no match is found. See also Array#rindex.

If neither block nor argument is given, an enumerator is returned instead.

a = [ "a", "b", "c" ]
a.index("b")        #=> 1
a.index("z")        #=> nil
a.index{|x|x=="b"}  #=> 1

This is an alias of #find_index.

 
               static VALUE
rb_ary_index(int argc, VALUE *argv, VALUE ary)
{
    VALUE val;
    long i;

    if (argc == 0) {
        RETURN_ENUMERATOR(ary, 0, 0);
        for (i=0; i<RARRAY_LEN(ary); i++) {
            if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
                return LONG2NUM(i);
            }
        }
        return Qnil;
    }
    rb_scan_args(argc, argv, "1", &val);
    if (rb_block_given_p())
        rb_warn("given block not used");
    for (i=0; i<RARRAY_LEN(ary); i++) {
        if (rb_equal(RARRAY_PTR(ary)[i], val))
            return LONG2NUM(i);
    }
    return Qnil;
}
            
first → obj or nil click to toggle source
first(n) → new_ary

Returns the first element, or the first n elements, of the array. If the array is empty, the first form returns nil, and the second form returns an empty array.

a = [ "q", "r", "s", "t" ]
a.first     #=> "q"
a.first(2)  #=> ["q", "r"]
 
               static VALUE
rb_ary_first(int argc, VALUE *argv, VALUE ary)
{
    if (argc == 0) {
        if (RARRAY_LEN(ary) == 0) return Qnil;
        return RARRAY_PTR(ary)[0];
    }
    else {
        return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
    }
}
            
flatten → new_ary click to toggle source
flatten(level) → new_ary

Returns a new array that is a one-dimensional flattening of this array (recursively). That is, for every element that is an array, extract its elements into the new array. If the optional level argument determines the level of recursion to flatten.

s = [ 1, 2, 3 ]           #=> [1, 2, 3]
t = [ 4, 5, 6, [7, 8] ]   #=> [4, 5, 6, [7, 8]]
a = [ s, t, 9, 10 ]       #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]
a.flatten                 #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
a = [ 1, 2, [3, [4, 5] ] ]
a.flatten(1)              #=> [1, 2, 3, [4, 5]]
 
               static VALUE
rb_ary_flatten(int argc, VALUE *argv, VALUE ary)
{
    int mod = 0, level = -1;
    VALUE result, lv;

    rb_scan_args(argc, argv, "01", &lv);
    if (!NIL_P(lv)) level = NUM2INT(lv);
    if (level == 0) return ary_make_shared_copy(ary);

    result = flatten(ary, level, &mod);
    OBJ_INFECT(result, ary);

    return result;
}
            
flatten! → ary or nil click to toggle source
flatten!(level) → array or nil

Flattens self in place. Returns nil if no modifications were made (i.e., ary contains no subarrays.) If the optional level argument determines the level of recursion to flatten.

a = [ 1, 2, [3, [4, 5] ] ]
a.flatten!   #=> [1, 2, 3, 4, 5]
a.flatten!   #=> nil
a            #=> [1, 2, 3, 4, 5]
a = [ 1, 2, [3, [4, 5] ] ]
a.flatten!(1) #=> [1, 2, 3, [4, 5]]
 
               static VALUE
rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary)
{
    int mod = 0, level = -1;
    VALUE result, lv;

    rb_scan_args(argc, argv, "01", &lv);
    rb_ary_modify_check(ary);
    if (!NIL_P(lv)) level = NUM2INT(lv);
    if (level == 0) return Qnil;

    result = flatten(ary, level, &mod);
    if (mod == 0) {
        ary_discard(result);
        return Qnil;
    }
    if (!(mod = ARY_EMBED_P(result))) rb_obj_freeze(result);
    rb_ary_replace(ary, result);
    if (mod) ARY_SET_EMBED_LEN(result, 0);

    return ary;
}
            
frozen? → true or false click to toggle source

Return true if this array is frozen (or temporarily frozen while being sorted).

 
               static VALUE
rb_ary_frozen_p(VALUE ary)
{
    if (OBJ_FROZEN(ary)) return Qtrue;
    return Qfalse;
}
            
hash → fixnum click to toggle source

Compute a hash-code for this array. Two arrays with the same content will have the same hash code (and will compare using eql?).

 
               static VALUE
rb_ary_hash(VALUE ary)
{
    return rb_exec_recursive_outer(recursive_hash, ary, 0);
}
            
include?(obj) → true or false click to toggle source

Returns true if the given object is present in self (that is, if any object == anObject), false otherwise.

a = [ "a", "b", "c" ]
a.include?("b")   #=> true
a.include?("z")   #=> false
 
               VALUE
rb_ary_includes(VALUE ary, VALUE item)
{
    long i;

    for (i=0; i<RARRAY_LEN(ary); i++) {
        if (rb_equal(RARRAY_PTR(ary)[i], item)) {
            return Qtrue;
        }
    }
    return Qfalse;
}
            
index(obj) → int or nil click to toggle source
index {|item| block} → int or nil
index → an_enumerator

Returns the index of the first object in self such that the object is == to obj. If a block is given instead of an argument, returns index of first object for which block is true. Returns nil if no match is found. See also Array#rindex.

If neither block nor argument is given, an enumerator is returned instead.

a = [ "a", "b", "c" ]
a.index("b")        #=> 1
a.index("z")        #=> nil
a.index{|x|x=="b"}  #=> 1

This is an alias of #find_index.

 
               static VALUE
rb_ary_index(int argc, VALUE *argv, VALUE ary)
{
    VALUE val;
    long i;

    if (argc == 0) {
        RETURN_ENUMERATOR(ary, 0, 0);
        for (i=0; i<RARRAY_LEN(ary); i++) {
            if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
                return LONG2NUM(i);
            }
        }
        return Qnil;
    }
    rb_scan_args(argc, argv, "1", &val);
    if (rb_block_given_p())
        rb_warn("given block not used");
    for (i=0; i<RARRAY_LEN(ary); i++) {
        if (rb_equal(RARRAY_PTR(ary)[i], val))
            return LONG2NUM(i);
    }
    return Qnil;
}
            
replace(other_ary) → ary click to toggle source

Replaces the contents of self with the contents of other_ary, truncating or expanding if necessary.

a = [ "a", "b", "c", "d", "e" ]
a.replace([ "x", "y", "z" ])   #=> ["x", "y", "z"]
a                              #=> ["x", "y", "z"]
 
               VALUE
rb_ary_replace(VALUE copy, VALUE orig)
{
    rb_ary_modify_check(copy);
    orig = to_ary(orig);
    if (copy == orig) return copy;

    if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) {
        VALUE *ptr;
        VALUE shared = 0;

        if (ARY_OWNS_HEAP_P(copy)) {
            xfree(RARRAY_PTR(copy));
        }
        else if (ARY_SHARED_P(copy)) {
            shared = ARY_SHARED(copy);
            FL_UNSET_SHARED(copy);
        }
        FL_SET_EMBED(copy);
        ptr = RARRAY_PTR(orig);
        MEMCPY(RARRAY_PTR(copy), ptr, VALUE, RARRAY_LEN(orig));
        if (shared) {
            rb_ary_decrement_share(shared);
        }
        ARY_SET_LEN(copy, RARRAY_LEN(orig));
    }
    else {
        VALUE shared = ary_make_shared(orig);
        if (ARY_OWNS_HEAP_P(copy)) {
            xfree(RARRAY_PTR(copy));
        }
        else {
            rb_ary_unshare_safe(copy);
        }
        FL_UNSET_EMBED(copy);
        ARY_SET_PTR(copy, RARRAY_PTR(orig));
        ARY_SET_LEN(copy, RARRAY_LEN(orig));
        rb_ary_set_shared(copy, shared);
    }
    return copy;
}
            
insert(index, obj...) → ary click to toggle source

Inserts the given values before the element with the given index (which may be negative).

a = %w{ a b c d }
a.insert(2, 99)         #=> ["a", "b", 99, "c", "d"]
a.insert(-2, 1, 2, 3)   #=> ["a", "b", 99, "c", 1, 2, 3, "d"]
 
               static VALUE
rb_ary_insert(int argc, VALUE *argv, VALUE ary)
{
    long pos;

    if (argc < 1) {
        rb_raise(rb_eArgError, "wrong number of arguments (at least 1)");
    }
    rb_ary_modify_check(ary);
    if (argc == 1) return ary;
    pos = NUM2LONG(argv[0]);
    if (pos == -1) {
        pos = RARRAY_LEN(ary);
    }
    if (pos < 0) {
        pos++;
    }
    rb_ary_splice(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1));
    return ary;
}
            
to_s → string click to toggle source
inspect → string

Creates a string representation of self.

 
               static VALUE
rb_ary_inspect(VALUE ary)
{
    if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]");
    return rb_exec_recursive(inspect_ary, ary, 0);
}
            
Also aliased as: to_s
join(sep=$,) → str click to toggle source

Returns a string created by converting each element of the array to a string, separated by sep.

[ "a", "b", "c" ].join        #=> "abc"
[ "a", "b", "c" ].join("-")   #=> "a-b-c"
 
               static VALUE
rb_ary_join_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE sep;

    rb_scan_args(argc, argv, "01", &sep);
    if (NIL_P(sep)) sep = rb_output_fs;

    return rb_ary_join(ary, sep);
}
            
keep_if {|item| block } → ary click to toggle source
keep_if → an_enumerator

Deletes every element of self for which block evaluates to false. See also Array#select!

If no block is given, an enumerator is returned instead.

a = %w{ a b c d e f }
a.keep_if {|v| v =~ /[aeiou]/}   #=> ["a", "e"]
 
               static VALUE
rb_ary_keep_if(VALUE ary)
{
    RETURN_ENUMERATOR(ary, 0, 0);
    rb_ary_select_bang(ary);
    return ary;
}
            
last → obj or nil click to toggle source
last(n) → new_ary

Returns the last element(s) of self. If the array is empty, the first form returns nil.

a = [ "w", "x", "y", "z" ]
a.last     #=> "z"
a.last(2)  #=> ["y", "z"]
 
               VALUE
rb_ary_last(int argc, VALUE *argv, VALUE ary)
{
    if (argc == 0) {
        if (RARRAY_LEN(ary) == 0) return Qnil;
        return RARRAY_PTR(ary)[RARRAY_LEN(ary)-1];
    }
    else {
        return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
    }
}
            
length → int click to toggle source

Returns the number of elements in self. May be zero.

[ 1, 2, 3, 4, 5 ].length   #=> 5
 
               static VALUE
rb_ary_length(VALUE ary)
{
    long len = RARRAY_LEN(ary);
    return LONG2NUM(len);
}
            
Also aliased as: size
collect {|item| block } → new_ary click to toggle source
map {|item| block } → new_ary
collect → an_enumerator
map → an_enumerator

Invokes block once for each element of self. Creates a new array containing the values returned by the block. See also Enumerable#collect.

If no block is given, an enumerator is returned instead.

a = [ "a", "b", "c", "d" ]
a.collect {|x| x + "!" }   #=> ["a!", "b!", "c!", "d!"]
a                          #=> ["a", "b", "c", "d"]
 
               static VALUE
rb_ary_collect(VALUE ary)
{
    long i;
    VALUE collect;

    RETURN_ENUMERATOR(ary, 0, 0);
    collect = rb_ary_new2(RARRAY_LEN(ary));
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        rb_ary_push(collect, rb_yield(RARRAY_PTR(ary)[i]));
    }
    return collect;
}
            
collect! {|item| block } → ary click to toggle source
map! {|item| block } → ary
collect → an_enumerator
map → an_enumerator

Invokes the block once for each element of self, replacing the element with the value returned by block. See also Enumerable#collect.

If no block is given, an enumerator is returned instead.

a = [ "a", "b", "c", "d" ]
a.collect! {|x| x + "!" }
a             #=>  [ "a!", "b!", "c!", "d!" ]
 
               static VALUE
rb_ary_collect_bang(VALUE ary)
{
    long i;

    RETURN_ENUMERATOR(ary, 0, 0);
    rb_ary_modify(ary);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        rb_ary_store(ary, i, rb_yield(RARRAY_PTR(ary)[i]));
    }
    return ary;
}
            
pack ( aTemplateString ) → aBinaryString click to toggle source

Packs the contents of arr into a binary sequence according to the directives in aTemplateString (see the table below) Directives “A,” “a,” and “Z” may be followed by a count, which gives the width of the resulting field. The remaining directives also may take a count, indicating the number of array elements to convert. If the count is an asterisk (“*”), all remaining array elements will be converted. Any of the directives “sSiIlL” may be followed by an underscore (“_”) or exclamation mark (“!”) to use the underlying platform’s native size for the specified type; otherwise, they use a platform-independent size. Spaces are ignored in the template string. See also String#unpack.

a = [ "a", "b", "c" ]
n = [ 65, 66, 67 ]
a.pack("A3A3A3")   #=> "a  b  c  "
a.pack("a3a3a3")   #=> "a\000\000b\000\000c\000\000"
n.pack("ccc")      #=> "ABC"

Directives for pack.

Integer      | Array   |
Directive    | Element | Meaning
---------------------------------------------------------------------------
   C         | Integer | 8-bit unsigned (unsigned char)
   S         | Integer | 16-bit unsigned, native endian (uint16_t)
   L         | Integer | 32-bit unsigned, native endian (uint32_t)
   Q         | Integer | 64-bit unsigned, native endian (uint64_t)
             |         |
   c         | Integer | 8-bit signed (signed char)
   s         | Integer | 16-bit signed, native endian (int16_t)
   l         | Integer | 32-bit signed, native endian (int32_t)
   q         | Integer | 64-bit signed, native endian (int64_t)
             |         |
   S_, S!    | Integer | unsigned short, native endian
   I, I_, I! | Integer | unsigned int, native endian
   L_, L!    | Integer | unsigned long, native endian
             |         |
   s_, s!    | Integer | signed short, native endian
   i, i_, i! | Integer | signed int, native endian
   l_, l!    | Integer | signed long, native endian
             |         |
   S> L> Q>  | Integer | same as the directives without ">" except
   s> l> q>  |         | big endian
   S!> I!>   |         | (available since Ruby 1.9.3)
   L!>       |         | "S>" is same as "n"
   s!> i!>   |         | "L>" is same as "N"
   l!>       |         |
             |         |
   S< L< Q<  | Integer | same as the directives without "<" except
   s< l< q<  |         | little endian
   S!< I!<   |         | (available since Ruby 1.9.3)
   L!<       |         | "S<" is same as "v"
   s!< i!<   |         | "L<" is same as "V"
   l!<       |         |
             |         |
   n         | Integer | 16-bit unsigned, network (big-endian) byte order
   N         | Integer | 32-bit unsigned, network (big-endian) byte order
   v         | Integer | 16-bit unsigned, VAX (little-endian) byte order
   V         | Integer | 32-bit unsigned, VAX (little-endian) byte order
             |         |
   U         | Integer | UTF-8 character
   w         | Integer | BER-compressed integer

Float        |         |
Directive    |         | Meaning
---------------------------------------------------------------------------
   D, d      | Float   | double-precision, native format
   F, f      | Float   | single-precision, native format
   E         | Float   | double-precision, little-endian byte order
   e         | Float   | single-precision, little-endian byte order
   G         | Float   | double-precision, network (big-endian) byte order
   g         | Float   | single-precision, network (big-endian) byte order

String       |         |
Directive    |         | Meaning
---------------------------------------------------------------------------
   A         | String  | arbitrary binary string (space padded, count is width)
   a         | String  | arbitrary binary string (null padded, count is width)
   Z         | String  | same as ``a'', except that null is added with *
   B         | String  | bit string (MSB first)
   b         | String  | bit string (LSB first)
   H         | String  | hex string (high nibble first)
   h         | String  | hex string (low nibble first)
   u         | String  | UU-encoded string
   M         | String  | quoted printable, MIME encoding (see RFC2045)
   m         | String  | base64 encoded string (see RFC 2045, count is width)
             |         | (if count is 0, no line feed are added, see RFC 4648)
   P         | String  | pointer to a structure (fixed-length string)
   p         | String  | pointer to a null-terminated string

Misc.        |         |
Directive    |         | Meaning
---------------------------------------------------------------------------
   @         | ---     | moves to absolute position
   X         | ---     | back up a byte
   x         | ---     | null byte
 
               static VALUE
pack_pack(VALUE ary, VALUE fmt)
{
    static const char nul10[] = "\0\0\0\0\0\0\0\0\0\0";
    static const char spc10[] = "          ";
    const char *p, *pend;
    VALUE res, from, associates = 0;
    char type;
    long items, len, idx, plen;
    const char *ptr;
    int enc_info = 1;           /* 0 - BINARY, 1 - US-ASCII, 2 - UTF-8 */
#ifdef NATINT_PACK
    int natint;         /* native integer */
#endif
    int signed_p, integer_size, bigendian_p;

    StringValue(fmt);
    p = RSTRING_PTR(fmt);
    pend = p + RSTRING_LEN(fmt);
    res = rb_str_buf_new(0);

    items = RARRAY_LEN(ary);
    idx = 0;

#define TOO_FEW (rb_raise(rb_eArgError, toofew), 0)
#define THISFROM (items > 0 ? RARRAY_PTR(ary)[idx] : TOO_FEW)
#define NEXTFROM (items-- > 0 ? RARRAY_PTR(ary)[idx++] : TOO_FEW)

    while (p < pend) {
        int explicit_endian = 0;
        if (RSTRING_PTR(fmt) + RSTRING_LEN(fmt) != pend) {
            rb_raise(rb_eRuntimeError, "format string modified");
        }
        type = *p++;           /* get data type */
#ifdef NATINT_PACK
        natint = 0;
#endif

        if (ISSPACE(type)) continue;
        if (type == '#') {
            while ((p < pend) && (*p != '\n')) {
                p++;
            }
            continue;
        }

        {
            static const char natstr[] = "sSiIlL";
            static const char endstr[] = "sSiIlLqQ";

          modifiers:
            switch (*p) {
              case '_':
              case '!':
                if (strchr(natstr, type)) {
#ifdef NATINT_PACK
                    natint = 1;
#endif
                    p++;
                }
                else {
                    rb_raise(rb_eArgError, "'%c' allowed only after types %s", *p, natstr);
                }
                goto modifiers;

              case '<':
              case '>':
                if (!strchr(endstr, type)) {
                    rb_raise(rb_eArgError, "'%c' allowed only after types %s", *p, endstr);
                }
                if (explicit_endian) {
                    rb_raise(rb_eRangeError, "Can't use both '<' and '>'");
                }
                explicit_endian = *p++;
                goto modifiers;
            }
        }

        if (*p == '*') {       /* set data length */
            len = strchr("@Xxu", type) ? 0
                : strchr("PMm", type) ? 1
                : items;
            p++;
        }
        else if (ISDIGIT(*p)) {
            errno = 0;
            len = STRTOUL(p, (char**)&p, 10);
            if (errno) {
                rb_raise(rb_eRangeError, "pack length too big");
            }
        }
        else {
            len = 1;
        }

        switch (type) {
          case 'U':
            /* if encoding is US-ASCII, upgrade to UTF-8 */
            if (enc_info == 1) enc_info = 2;
            break;
          case 'm': case 'M': case 'u':
            /* keep US-ASCII (do nothing) */
            break;
          default:
            /* fall back to BINARY */
            enc_info = 0;
            break;
        }
        switch (type) {
          case 'A': case 'a': case 'Z':
          case 'B': case 'b':
          case 'H': case 'h':
            from = NEXTFROM;
            if (NIL_P(from)) {
                ptr = "";
                plen = 0;
            }
            else {
                StringValue(from);
                ptr = RSTRING_PTR(from);
                plen = RSTRING_LEN(from);
                OBJ_INFECT(res, from);
            }

            if (p[-1] == '*')
                len = plen;

            switch (type) {
              case 'a':                /* arbitrary binary string (null padded)  */
              case 'A':         /* arbitrary binary string (ASCII space padded) */
              case 'Z':         /* null terminated string  */
                if (plen >= len) {
                    rb_str_buf_cat(res, ptr, len);
                    if (p[-1] == '*' && type == 'Z')
                        rb_str_buf_cat(res, nul10, 1);
                }
                else {
                    rb_str_buf_cat(res, ptr, plen);
                    len -= plen;
                    while (len >= 10) {
                        rb_str_buf_cat(res, (type == 'A')?spc10:nul10, 10);
                        len -= 10;
                    }
                    rb_str_buf_cat(res, (type == 'A')?spc10:nul10, len);
                }
                break;

              case 'b':                /* bit string (ascending) */
                {
                    int byte = 0;
                    long i, j = 0;

                    if (len > plen) {
                        j = (len - plen + 1)/2;
                        len = plen;
                    }
                    for (i=0; i++ < len; ptr++) {
                        if (*ptr & 1)
                            byte |= 128;
                        if (i & 7)
                            byte >>= 1;
                        else {
                            char c = byte & 0xff;
                            rb_str_buf_cat(res, &c, 1);
                            byte = 0;
                        }
                    }
                    if (len & 7) {
                        char c;
                        byte >>= 7 - (len & 7);
                        c = byte & 0xff;
                        rb_str_buf_cat(res, &c, 1);
                    }
                    len = j;
                    goto grow;
                }
                break;

              case 'B':                /* bit string (descending) */
                {
                    int byte = 0;
                    long i, j = 0;

                    if (len > plen) {
                        j = (len - plen + 1)/2;
                        len = plen;
                    }
                    for (i=0; i++ < len; ptr++) {
                        byte |= *ptr & 1;
                        if (i & 7)
                            byte <<= 1;
                        else {
                            char c = byte & 0xff;
                            rb_str_buf_cat(res, &c, 1);
                            byte = 0;
                        }
                    }
                    if (len & 7) {
                        char c;
                        byte <<= 7 - (len & 7);
                        c = byte & 0xff;
                        rb_str_buf_cat(res, &c, 1);
                    }
                    len = j;
                    goto grow;
                }
                break;

              case 'h':                /* hex string (low nibble first) */
                {
                    int byte = 0;
                    long i, j = 0;

                    if (len > plen) {
                        j = (len + 1) / 2 - (plen + 1) / 2;
                        len = plen;
                    }
                    for (i=0; i++ < len; ptr++) {
                        if (ISALPHA(*ptr))
                            byte |= (((*ptr & 15) + 9) & 15) << 4;
                        else
                            byte |= (*ptr & 15) << 4;
                        if (i & 1)
                            byte >>= 4;
                        else {
                            char c = byte & 0xff;
                            rb_str_buf_cat(res, &c, 1);
                            byte = 0;
                        }
                    }
                    if (len & 1) {
                        char c = byte & 0xff;
                        rb_str_buf_cat(res, &c, 1);
                    }
                    len = j;
                    goto grow;
                }
                break;

              case 'H':                /* hex string (high nibble first) */
                {
                    int byte = 0;
                    long i, j = 0;

                    if (len > plen) {
                        j = (len + 1) / 2 - (plen + 1) / 2;
                        len = plen;
                    }
                    for (i=0; i++ < len; ptr++) {
                        if (ISALPHA(*ptr))
                            byte |= ((*ptr & 15) + 9) & 15;
                        else
                            byte |= *ptr & 15;
                        if (i & 1)
                            byte <<= 4;
                        else {
                            char c = byte & 0xff;
                            rb_str_buf_cat(res, &c, 1);
                            byte = 0;
                        }
                    }
                    if (len & 1) {
                        char c = byte & 0xff;
                        rb_str_buf_cat(res, &c, 1);
                    }
                    len = j;
                    goto grow;
                }
                break;
            }
            break;

          case 'c':            /* signed char */
          case 'C':            /* unsigned char */
            while (len-- > 0) {
                char c;

                from = NEXTFROM;
                c = (char)num2i32(from);
                rb_str_buf_cat(res, &c, sizeof(char));
            }
            break;

          case 's':            /* signed short */
            signed_p = 1;
            integer_size = NATINT_LEN(short, 2);
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

          case 'S':            /* unsigned short */
            signed_p = 0;
            integer_size = NATINT_LEN(short, 2);
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

          case 'i':            /* signed int */
            signed_p = 1;
            integer_size = (int)sizeof(int);
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

          case 'I':            /* unsigned int */
            signed_p = 0;
            integer_size = (int)sizeof(int);
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

          case 'l':            /* signed long */
            signed_p = 1;
            integer_size = NATINT_LEN(long, 4);
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

          case 'L':            /* unsigned long */
            signed_p = 0;
            integer_size = NATINT_LEN(long, 4);
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

          case 'q':            /* signed quad (64bit) int */
            signed_p = 1;
            integer_size = 8;
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

          case 'Q':            /* unsigned quad (64bit) int */
            signed_p = 0;
            integer_size = 8;
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

          case 'n':            /* unsigned short (network byte-order)  */
            signed_p = 0;
            integer_size = 2;
            bigendian_p = 1;
            goto pack_integer;

          case 'N':            /* unsigned long (network byte-order) */
            signed_p = 0;
            integer_size = 4;
            bigendian_p = 1;
            goto pack_integer;

          case 'v':            /* unsigned short (VAX byte-order) */
            signed_p = 0;
            integer_size = 2;
            bigendian_p = 0;
            goto pack_integer;

          case 'V':            /* unsigned long (VAX byte-order) */
            signed_p = 0;
            integer_size = 4;
            bigendian_p = 0;
            goto pack_integer;

          pack_integer:
            if (explicit_endian) {
                bigendian_p = explicit_endian == '>';
            }

            switch (integer_size) {
#if defined(HAVE_INT16_T) && !defined(FORCE_BIG_PACK)
              case SIZEOF_INT16_T:
                while (len-- > 0) {
                    union {
                        int16_t i;
                        char a[sizeof(int16_t)];
                    } v;

                    from = NEXTFROM;
                    v.i = (int16_t)num2i32(from);
                    if (bigendian_p != BIGENDIAN_P()) v.i = swap16(v.i);
                    rb_str_buf_cat(res, v.a, sizeof(int16_t));
                }
                break;
#endif

#if defined(HAVE_INT32_T) && !defined(FORCE_BIG_PACK)
              case SIZEOF_INT32_T:
                while (len-- > 0) {
                    union {
                        int32_t i;
                        char a[sizeof(int32_t)];
                    } v;

                    from = NEXTFROM;
                    v.i = (int32_t)num2i32(from);
                    if (bigendian_p != BIGENDIAN_P()) v.i = swap32(v.i);
                    rb_str_buf_cat(res, v.a, sizeof(int32_t));
                }
                break;
#endif

#if defined(HAVE_INT64_T) && SIZEOF_LONG == SIZEOF_INT64_T && !defined(FORCE_BIG_PACK)
              case SIZEOF_INT64_T:
                while (len-- > 0) {
                    union {
                        int64_t i;
                        char a[sizeof(int64_t)];
                    } v;

                    from = NEXTFROM;
                    v.i = num2i32(from); /* can return 64bit value if SIZEOF_LONG == SIZEOF_INT64_T */
                    if (bigendian_p != BIGENDIAN_P()) v.i = swap64(v.i);
                    rb_str_buf_cat(res, v.a, sizeof(int64_t));
                }
                break;
#endif

              default:
                if (integer_size > MAX_INTEGER_PACK_SIZE)
                    rb_bug("unexpected intger size for pack: %d", integer_size);
                while (len-- > 0) {
                    union {
                        unsigned long i[(MAX_INTEGER_PACK_SIZE+SIZEOF_LONG-1)/SIZEOF_LONG];
                        char a[(MAX_INTEGER_PACK_SIZE+SIZEOF_LONG-1)/SIZEOF_LONG*SIZEOF_LONG];
                    } v;
                    int num_longs = (integer_size+SIZEOF_LONG-1)/SIZEOF_LONG;
                    int i;

                    from = NEXTFROM;
                    rb_big_pack(from, v.i, num_longs);
                    if (bigendian_p) {
                        for (i = 0; i < num_longs/2; i++) {
                            unsigned long t = v.i[i];
                            v.i[i] = v.i[num_longs-1-i];
                            v.i[num_longs-1-i] = t;
                        }
                    }
                    if (bigendian_p != BIGENDIAN_P()) {
                        for (i = 0; i < num_longs; i++)
                            v.i[i] = swapl(v.i[i]);
                    }
                    rb_str_buf_cat(res,
                                   bigendian_p ?
                                     v.a + sizeof(long)*num_longs - integer_size :
                                     v.a,
                                   integer_size);
                }
                break;
            }
            break;

          case 'f':            /* single precision float in native format */
          case 'F':            /* ditto */
            while (len-- > 0) {
                float f;

                from = NEXTFROM;
                f = (float)RFLOAT_VALUE(rb_to_float(from));
                rb_str_buf_cat(res, (char*)&f, sizeof(float));
            }
            break;

          case 'e':            /* single precision float in VAX byte-order */
            while (len-- > 0) {
                float f;
                FLOAT_CONVWITH(ftmp);

                from = NEXTFROM;
                f = (float)RFLOAT_VALUE(rb_to_float(from));
                f = HTOVF(f,ftmp);
                rb_str_buf_cat(res, (char*)&f, sizeof(float));
            }
            break;

          case 'E':            /* double precision float in VAX byte-order */
            while (len-- > 0) {
                double d;
                DOUBLE_CONVWITH(dtmp);

                from = NEXTFROM;
                d = RFLOAT_VALUE(rb_to_float(from));
                d = HTOVD(d,dtmp);
                rb_str_buf_cat(res, (char*)&d, sizeof(double));
            }
            break;

          case 'd':            /* double precision float in native format */
          case 'D':            /* ditto */
            while (len-- > 0) {
                double d;

                from = NEXTFROM;
                d = RFLOAT_VALUE(rb_to_float(from));
                rb_str_buf_cat(res, (char*)&d, sizeof(double));
            }
            break;

          case 'g':            /* single precision float in network byte-order */
            while (len-- > 0) {
                float f;
                FLOAT_CONVWITH(ftmp);

                from = NEXTFROM;
                f = (float)RFLOAT_VALUE(rb_to_float(from));
                f = HTONF(f,ftmp);
                rb_str_buf_cat(res, (char*)&f, sizeof(float));
            }
            break;

          case 'G':            /* double precision float in network byte-order */
            while (len-- > 0) {
                double d;
                DOUBLE_CONVWITH(dtmp);

                from = NEXTFROM;
                d = RFLOAT_VALUE(rb_to_float(from));
                d = HTOND(d,dtmp);
                rb_str_buf_cat(res, (char*)&d, sizeof(double));
            }
            break;

          case 'x':            /* null byte */
          grow:
            while (len >= 10) {
                rb_str_buf_cat(res, nul10, 10);
                len -= 10;
            }
            rb_str_buf_cat(res, nul10, len);
            break;

          case 'X':            /* back up byte */
          shrink:
            plen = RSTRING_LEN(res);
            if (plen < len)
                rb_raise(rb_eArgError, "X outside of string");
            rb_str_set_len(res, plen - len);
            break;

          case '@':            /* null fill to absolute position */
            len -= RSTRING_LEN(res);
            if (len > 0) goto grow;
            len = -len;
            if (len > 0) goto shrink;
            break;

          case '%':
            rb_raise(rb_eArgError, "%% is not supported");
            break;

          case 'U':            /* Unicode character */
            while (len-- > 0) {
                SIGNED_VALUE l;
                char buf[8];
                int le;

                from = NEXTFROM;
                from = rb_to_int(from);
                l = NUM2LONG(from);
                if (l < 0) {
                    rb_raise(rb_eRangeError, "pack(U): value out of range");
                }
                le = rb_uv_to_utf8(buf, l);
                rb_str_buf_cat(res, (char*)buf, le);
            }
            break;

          case 'u':            /* uuencoded string */
          case 'm':            /* base64 encoded string */
            from = NEXTFROM;
            StringValue(from);
            ptr = RSTRING_PTR(from);
            plen = RSTRING_LEN(from);

            if (len == 0 && type == 'm') {
                encodes(res, ptr, plen, type, 0);
                ptr += plen;
                break;
            }
            if (len <= 2)
                len = 45;
            else
                len = len / 3 * 3;
            while (plen > 0) {
                long todo;

                if (plen > len)
                    todo = len;
                else
                    todo = plen;
                encodes(res, ptr, todo, type, 1);
                plen -= todo;
                ptr += todo;
            }
            break;

          case 'M':            /* quoted-printable encoded string */
            from = rb_obj_as_string(NEXTFROM);
            if (len <= 1)
                len = 72;
            qpencode(res, from, len);
            break;

          case 'P':            /* pointer to packed byte string */
            from = THISFROM;
            if (!NIL_P(from)) {
                StringValue(from);
                if (RSTRING_LEN(from) < len) {
                    rb_raise(rb_eArgError, "too short buffer for P(%ld for %ld)",
                             RSTRING_LEN(from), len);
                }
            }
            len = 1;
            /* FALL THROUGH */
          case 'p':            /* pointer to string */
            while (len-- > 0) {
                char *t;
                from = NEXTFROM;
                if (NIL_P(from)) {
                    t = 0;
                }
                else {
                    t = StringValuePtr(from);
                }
                if (!associates) {
                    associates = rb_ary_new();
                }
                rb_ary_push(associates, from);
                rb_obj_taint(from);
                rb_str_buf_cat(res, (char*)&t, sizeof(char*));
            }
            break;

          case 'w':            /* BER compressed integer  */
            while (len-- > 0) {
                unsigned long ul;
                VALUE buf = rb_str_new(0, 0);
                char c, *bufs, *bufe;

                from = NEXTFROM;
                if (TYPE(from) == T_BIGNUM) {
                    VALUE big128 = rb_uint2big(128);
                    while (TYPE(from) == T_BIGNUM) {
                        from = rb_big_divmod(from, big128);
                        c = NUM2INT(RARRAY_PTR(from)[1]) | 0x80; /* mod */
                        rb_str_buf_cat(buf, &c, sizeof(char));
                        from = RARRAY_PTR(from)[0]; /* div */
                    }
                }

                {
                    long l = NUM2LONG(from);
                    if (l < 0) {
                        rb_raise(rb_eArgError, "can't compress negative numbers");
                    }
                    ul = l;
                }

                while (ul) {
                    c = (char)(ul & 0x7f) | 0x80;
                    rb_str_buf_cat(buf, &c, sizeof(char));
                    ul >>=  7;
                }

                if (RSTRING_LEN(buf)) {
                    bufs = RSTRING_PTR(buf);
                    bufe = bufs + RSTRING_LEN(buf) - 1;
                    *bufs &= 0x7f; /* clear continue bit */
                    while (bufs < bufe) { /* reverse */
                        c = *bufs;
                        *bufs++ = *bufe;
                        *bufe-- = c;
                    }
                    rb_str_buf_cat(res, RSTRING_PTR(buf), RSTRING_LEN(buf));
                }
                else {
                    c = 0;
                    rb_str_buf_cat(res, &c, sizeof(char));
                }
            }
            break;

          default:
            break;
        }
    }

    if (associates) {
        rb_str_associate(res, associates);
    }
    OBJ_INFECT(res, fmt);
    switch (enc_info) {
      case 1:
        ENCODING_CODERANGE_SET(res, rb_usascii_encindex(), ENC_CODERANGE_7BIT);
        break;
      case 2:
        rb_enc_set_index(res, rb_utf8_encindex());
        break;
      default:
        /* do nothing, keep ASCII-8BIT */
        break;
    }
    return res;
}
            
permutation { |p| block } → ary click to toggle source
permutation → an_enumerator
permutation(n) { |p| block } → ary
permutation(n) → an_enumerator

When invoked with a block, yield all permutations of length n of the elements of ary, then return the array itself. If n is not specified, yield all permutations of all elements. The implementation makes no guarantees about the order in which the permutations are yielded.

If no block is given, an enumerator is returned instead.

Examples:

a = [1, 2, 3]
a.permutation.to_a     #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
a.permutation(1).to_a  #=> [[1],[2],[3]]
a.permutation(2).to_a  #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]
a.permutation(3).to_a  #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
a.permutation(0).to_a  #=> [[]] # one permutation of length 0
a.permutation(4).to_a  #=> []   # no permutations of length 4
 
               static VALUE
rb_ary_permutation(int argc, VALUE *argv, VALUE ary)
{
    VALUE num;
    long r, n, i;

    n = RARRAY_LEN(ary);                  /* Array length */
    RETURN_ENUMERATOR(ary, argc, argv);   /* Return enumerator if no block */
    rb_scan_args(argc, argv, "01", &num);
    r = NIL_P(num) ? n : NUM2LONG(num);   /* Permutation size from argument */

    if (r < 0 || n < r) {
        /* no permutations: yield nothing */
    }
    else if (r == 0) { /* exactly one permutation: the zero-length array */
        rb_yield(rb_ary_new2(0));
    }
    else if (r == 1) { /* this is a special, easy case */
        for (i = 0; i < RARRAY_LEN(ary); i++) {
            rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
        }
    }
    else {             /* this is the general case */
        volatile VALUE t0 = tmpbuf(n,sizeof(long));
        long *p = (long*)RSTRING_PTR(t0);
        volatile VALUE t1 = tmpbuf(n,sizeof(char));
        char *used = (char*)RSTRING_PTR(t1);
        VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
        RBASIC(ary0)->klass = 0;

        MEMZERO(used, char, n); /* initialize array */

        permute0(n, r, p, 0, used, ary0); /* compute and yield permutations */
        tmpbuf_discard(t0);
        tmpbuf_discard(t1);
        RBASIC(ary0)->klass = rb_cArray;
    }
    return ary;
}
            
pop → obj or nil click to toggle source
pop(n) → new_ary

Removes the last element from self and returns it, or nil if the array is empty.

If a number n is given, returns an array of the last n elements (or less) just like array.slice!(-n, n) does.

a = [ "a", "b", "c", "d" ]
a.pop     #=> "d"
a.pop(2)  #=> ["b", "c"]
a         #=> ["a"]
 
               static VALUE
rb_ary_pop_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE result;

    if (argc == 0) {
        return rb_ary_pop(ary);
    }

    rb_ary_modify_check(ary);
    result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
    ARY_INCREASE_LEN(ary, -RARRAY_LEN(result));
    return result;
}
            
product(other_ary, ...) → new_ary click to toggle source
product(other_ary, ...) { |p| block } → ary

Returns an array of all combinations of elements from all arrays. The length of the returned array is the product of the length of self and the argument arrays. If given a block, product will yield all combinations and return self instead.

[1,2,3].product([4,5])     #=> [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]]
[1,2].product([1,2])       #=> [[1,1],[1,2],[2,1],[2,2]]
[1,2].product([3,4],[5,6]) #=> [[1,3,5],[1,3,6],[1,4,5],[1,4,6],
                           #     [2,3,5],[2,3,6],[2,4,5],[2,4,6]]
[1,2].product()            #=> [[1],[2]]
[1,2].product([])          #=> []
 
               static VALUE
rb_ary_product(int argc, VALUE *argv, VALUE ary)
{
    int n = argc+1;    /* How many arrays we're operating on */
    volatile VALUE t0 = tmpary(n);
    volatile VALUE t1 = tmpbuf(n, sizeof(int));
    VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */
    int *counters = (int*)RSTRING_PTR(t1); /* The current position in each one */
    VALUE result = Qnil;      /* The array we'll be returning, when no block given */
    long i,j;
    long resultlen = 1;

    RBASIC(t0)->klass = 0;
    RBASIC(t1)->klass = 0;

    /* initialize the arrays of arrays */
    ARY_SET_LEN(t0, n);
    arrays[0] = ary;
    for (i = 1; i < n; i++) arrays[i] = Qnil;
    for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]);

    /* initialize the counters for the arrays */
    for (i = 0; i < n; i++) counters[i] = 0;

    /* Otherwise, allocate and fill in an array of results */
    if (rb_block_given_p()) {
        /* Make defensive copies of arrays; exit if any is empty */
        for (i = 0; i < n; i++) {
            if (RARRAY_LEN(arrays[i]) == 0) goto done;
            arrays[i] = ary_make_shared_copy(arrays[i]);
        }
    }
    else {
        /* Compute the length of the result array; return [] if any is empty */
        for (i = 0; i < n; i++) {
            long k = RARRAY_LEN(arrays[i]), l = resultlen;
            if (k == 0) {
                result = rb_ary_new2(0);
                goto done;
            }
            resultlen *= k;
            if (resultlen < k || resultlen < l || resultlen / k != l) {
                rb_raise(rb_eRangeError, "too big to product");
            }
        }
        result = rb_ary_new2(resultlen);
    }
    for (;;) {
        int m;
        /* fill in one subarray */
        VALUE subarray = rb_ary_new2(n);
        for (j = 0; j < n; j++) {
            rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j]));
        }

        /* put it on the result array */
        if(NIL_P(result)) {
            FL_SET(t0, FL_USER5);
            rb_yield(subarray);
            if (! FL_TEST(t0, FL_USER5)) {
                rb_raise(rb_eRuntimeError, "product reentered");
            }
            else {
                FL_UNSET(t0, FL_USER5);
            }
        }
        else {
            rb_ary_push(result, subarray);
        }

        /*
         * Increment the last counter.  If it overflows, reset to 0
         * and increment the one before it.
         */
        m = n-1;
        counters[m]++;
        while (counters[m] == RARRAY_LEN(arrays[m])) {
            counters[m] = 0;
            /* If the first counter overflows, we are done */
            if (--m < 0) goto done;
            counters[m]++;
        }
    }
done:
    tmpary_discard(t0);
    tmpbuf_discard(t1);

    return NIL_P(result) ? ary : result;
}
            
push(obj, ... ) → ary click to toggle source

Append—Pushes the given object(s) on to the end of this array. This expression returns the array itself, so several appends may be chained together.

a = [ "a", "b", "c" ]
a.push("d", "e", "f")
        #=> ["a", "b", "c", "d", "e", "f"]
 
               static VALUE
rb_ary_push_m(int argc, VALUE *argv, VALUE ary)
{
    rb_ary_modify(ary);
    while (argc--) {
        rb_ary_push_1(ary, *argv++);
    }
    return ary;
}
            
rassoc(obj) → new_ary or nil click to toggle source

Searches through the array whose elements are also arrays. Compares obj with the second element of each contained array using ==. Returns the first contained array that matches. See also Array#assoc.

a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ]
a.rassoc("two")    #=> [2, "two"]
a.rassoc("four")   #=> nil
 
               VALUE
rb_ary_rassoc(VALUE ary, VALUE value)
{
    long i;
    VALUE v;

    for (i = 0; i < RARRAY_LEN(ary); ++i) {
        v = RARRAY_PTR(ary)[i];
        if (TYPE(v) == T_ARRAY &&
            RARRAY_LEN(v) > 1 &&
            rb_equal(RARRAY_PTR(v)[1], value))
            return v;
    }
    return Qnil;
}
            
reject {|item| block } → new_ary click to toggle source
reject → an_enumerator

Returns a new array containing the items in self for which the block is not true. See also Array#delete_if

If no block is given, an enumerator is returned instead.

 
               static VALUE
rb_ary_reject(VALUE ary)
{
    VALUE rejected_ary;

    RETURN_ENUMERATOR(ary, 0, 0);
    rejected_ary = rb_ary_new();
    ary_reject(ary, rejected_ary);
    return rejected_ary;
}
            
reject! {|item| block } → ary or nil click to toggle source
reject! → an_enumerator

Equivalent to Array#delete_if, deleting elements from self for which the block evaluates to true, but returns nil if no changes were made. The array is changed instantly every time the block is called and not after the iteration is over. See also Enumerable#reject and Array#delete_if.

If no block is given, an enumerator is returned instead.

 
               static VALUE
rb_ary_reject_bang(VALUE ary)
{
    RETURN_ENUMERATOR(ary, 0, 0);
    return ary_reject_bang(ary);
}
            
repeated_combination(n) { |c| block } → ary click to toggle source
repeated_combination(n) → an_enumerator

When invoked with a block, yields all repeated combinations of length n of elements from ary and then returns ary itself. The implementation makes no guarantees about the order in which the repeated combinations are yielded.

If no block is given, an enumerator is returned instead.

Examples:

a = [1, 2, 3]
a.repeated_combination(1).to_a  #=> [[1], [2], [3]]
a.repeated_combination(2).to_a  #=> [[1,1],[1,2],[1,3],[2,2],[2,3],[3,3]]
a.repeated_combination(3).to_a  #=> [[1,1,1],[1,1,2],[1,1,3],[1,2,2],[1,2,3],
                                #    [1,3,3],[2,2,2],[2,2,3],[2,3,3],[3,3,3]]
a.repeated_combination(4).to_a  #=> [[1,1,1,1],[1,1,1,2],[1,1,1,3],[1,1,2,2],[1,1,2,3],
                                #    [1,1,3,3],[1,2,2,2],[1,2,2,3],[1,2,3,3],[1,3,3,3],
                                #    [2,2,2,2],[2,2,2,3],[2,2,3,3],[2,3,3,3],[3,3,3,3]]
a.repeated_combination(0).to_a  #=> [[]] # one combination of length 0
 
               static VALUE
rb_ary_repeated_combination(VALUE ary, VALUE num)
{
    long n, i, len;

    n = NUM2LONG(num);                 /* Combination size from argument */
    RETURN_ENUMERATOR(ary, 1, &num);   /* Return enumerator if no block */
    len = RARRAY_LEN(ary);
    if (n < 0) {
        /* yield nothing */
    }
    else if (n == 0) {
        rb_yield(rb_ary_new2(0));
    }
    else if (n == 1) {
        for (i = 0; i < len; i++) {
            rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
        }
    }
    else if (len == 0) {
        /* yield nothing */
    }
    else {
        volatile VALUE t0 = tmpbuf(n, sizeof(long));
        long *p = (long*)RSTRING_PTR(t0);
        VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
        RBASIC(ary0)->klass = 0;

        rcombinate0(len, n, p, 0, n, ary0); /* compute and yield repeated combinations */
        tmpbuf_discard(t0);
        RBASIC(ary0)->klass = rb_cArray;
    }
    return ary;
}
            
repeated_permutation(n) { |p| block } → ary click to toggle source
repeated_permutation(n) → an_enumerator

When invoked with a block, yield all repeated permutations of length n of the elements of ary, then return the array itself. The implementation makes no guarantees about the order in which the repeated permutations are yielded.

If no block is given, an enumerator is returned instead.

Examples:

a = [1, 2]
a.repeated_permutation(1).to_a  #=> [[1], [2]]
a.repeated_permutation(2).to_a  #=> [[1,1],[1,2],[2,1],[2,2]]
a.repeated_permutation(3).to_a  #=> [[1,1,1],[1,1,2],[1,2,1],[1,2,2],
                                #    [2,1,1],[2,1,2],[2,2,1],[2,2,2]]
a.repeated_permutation(0).to_a  #=> [[]] # one permutation of length 0
 
               static VALUE
rb_ary_repeated_permutation(VALUE ary, VALUE num)
{
    long r, n, i;

    n = RARRAY_LEN(ary);                  /* Array length */
    RETURN_ENUMERATOR(ary, 1, &num);      /* Return enumerator if no block */
    r = NUM2LONG(num);                    /* Permutation size from argument */

    if (r < 0) {
        /* no permutations: yield nothing */
    }
    else if (r == 0) { /* exactly one permutation: the zero-length array */
        rb_yield(rb_ary_new2(0));
    }
    else if (r == 1) { /* this is a special, easy case */
        for (i = 0; i < RARRAY_LEN(ary); i++) {
            rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
        }
    }
    else {             /* this is the general case */
        volatile VALUE t0 = tmpbuf(r, sizeof(long));
        long *p = (long*)RSTRING_PTR(t0);
        VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
        RBASIC(ary0)->klass = 0;

        rpermute0(n, r, p, 0, ary0); /* compute and yield repeated permutations */
        tmpbuf_discard(t0);
        RBASIC(ary0)->klass = rb_cArray;
    }
    return ary;
}
            
replace(other_ary) → ary click to toggle source

Replaces the contents of self with the contents of other_ary, truncating or expanding if necessary.

a = [ "a", "b", "c", "d", "e" ]
a.replace([ "x", "y", "z" ])   #=> ["x", "y", "z"]
a                              #=> ["x", "y", "z"]
 
               VALUE
rb_ary_replace(VALUE copy, VALUE orig)
{
    rb_ary_modify_check(copy);
    orig = to_ary(orig);
    if (copy == orig) return copy;

    if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) {
        VALUE *ptr;
        VALUE shared = 0;

        if (ARY_OWNS_HEAP_P(copy)) {
            xfree(RARRAY_PTR(copy));
        }
        else if (ARY_SHARED_P(copy)) {
            shared = ARY_SHARED(copy);
            FL_UNSET_SHARED(copy);
        }
        FL_SET_EMBED(copy);
        ptr = RARRAY_PTR(orig);
        MEMCPY(RARRAY_PTR(copy), ptr, VALUE, RARRAY_LEN(orig));
        if (shared) {
            rb_ary_decrement_share(shared);
        }
        ARY_SET_LEN(copy, RARRAY_LEN(orig));
    }
    else {
        VALUE shared = ary_make_shared(orig);
        if (ARY_OWNS_HEAP_P(copy)) {
            xfree(RARRAY_PTR(copy));
        }
        else {
            rb_ary_unshare_safe(copy);
        }
        FL_UNSET_EMBED(copy);
        ARY_SET_PTR(copy, RARRAY_PTR(orig));
        ARY_SET_LEN(copy, RARRAY_LEN(orig));
        rb_ary_set_shared(copy, shared);
    }
    return copy;
}
            
reverse → new_ary click to toggle source

Returns a new array containing self‘s elements in reverse order.

[ "a", "b", "c" ].reverse   #=> ["c", "b", "a"]
[ 1 ].reverse               #=> [1]
 
               static VALUE
rb_ary_reverse_m(VALUE ary)
{
    long len = RARRAY_LEN(ary);
    VALUE dup = rb_ary_new2(len);

    if (len > 0) {
        VALUE *p1 = RARRAY_PTR(ary);
        VALUE *p2 = RARRAY_PTR(dup) + len - 1;
        do *p2-- = *p1++; while (--len > 0);
    }
    ARY_SET_LEN(dup, RARRAY_LEN(ary));
    return dup;
}
            
reverse! → ary click to toggle source

Reverses self in place.

a = [ "a", "b", "c" ]
a.reverse!       #=> ["c", "b", "a"]
a                #=> ["c", "b", "a"]
 
               static VALUE
rb_ary_reverse_bang(VALUE ary)
{
    return rb_ary_reverse(ary);
}
            
reverse_each {|item| block } → ary click to toggle source
reverse_each → an_enumerator

Same as Array#each, but traverses self in reverse order.

a = [ "a", "b", "c" ]
a.reverse_each {|x| print x, " " }

produces:

c b a
 
               static VALUE
rb_ary_reverse_each(VALUE ary)
{
    long len;

    RETURN_ENUMERATOR(ary, 0, 0);
    len = RARRAY_LEN(ary);
    while (len--) {
        rb_yield(RARRAY_PTR(ary)[len]);
        if (RARRAY_LEN(ary) < len) {
            len = RARRAY_LEN(ary);
        }
    }
    return ary;
}
            
rindex(obj) → int or nil click to toggle source
rindex {|item| block} → int or nil
rindex → an_enumerator

Returns the index of the last object in self == to obj. If a block is given instead of an argument, returns index of first object for which block is true, starting from the last object. Returns nil if no match is found. See also Array#index.

If neither block nor argument is given, an enumerator is returned instead.

a = [ "a", "b", "b", "b", "c" ]
a.rindex("b")        #=> 3
a.rindex("z")        #=> nil
a.rindex{|x|x=="b"}  #=> 3
 
               static VALUE
rb_ary_rindex(int argc, VALUE *argv, VALUE ary)
{
    VALUE val;
    long i = RARRAY_LEN(ary);

    if (argc == 0) {
        RETURN_ENUMERATOR(ary, 0, 0);
        while (i--) {
            if (RTEST(rb_yield(RARRAY_PTR(ary)[i])))
                return LONG2NUM(i);
            if (i > RARRAY_LEN(ary)) {
                i = RARRAY_LEN(ary);
            }
        }
        return Qnil;
    }
    rb_scan_args(argc, argv, "1", &val);
    if (rb_block_given_p())
        rb_warn("given block not used");
    while (i--) {
        if (rb_equal(RARRAY_PTR(ary)[i], val))
            return LONG2NUM(i);
        if (i > RARRAY_LEN(ary)) {
            i = RARRAY_LEN(ary);
        }
    }
    return Qnil;
}
            
rotate(cnt=1) → new_ary click to toggle source

Returns new array by rotating self so that the element at cnt in self is the first element of the new array. If cnt is negative then it rotates in the opposite direction.

a = [ "a", "b", "c", "d" ]
a.rotate         #=> ["b", "c", "d", "a"]
a                #=> ["a", "b", "c", "d"]
a.rotate(2)      #=> ["c", "d", "a", "b"]
a.rotate(-3)     #=> ["b", "c", "d", "a"]
 
               static VALUE
rb_ary_rotate_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE rotated, *ptr, *ptr2;
    long len, cnt = 1;

    switch (argc) {
      case 1: cnt = NUM2LONG(argv[0]);
      case 0: break;
      default: rb_scan_args(argc, argv, "01", NULL);
    }

    len = RARRAY_LEN(ary);
    rotated = rb_ary_new2(len);
    if (len > 0) {
        cnt = rotate_count(cnt, len);
        ptr = RARRAY_PTR(ary);
        ptr2 = RARRAY_PTR(rotated);
        len -= cnt;
        MEMCPY(ptr2, ptr + cnt, VALUE, len);
        MEMCPY(ptr2 + len, ptr, VALUE, cnt);
    }
    ARY_SET_LEN(rotated, RARRAY_LEN(ary));
    return rotated;
}
            
rotate!(cnt=1) → ary click to toggle source

Rotates self in place so that the element at cnt comes first, and returns self. If cnt is negative then it rotates in the opposite direction.

a = [ "a", "b", "c", "d" ]
a.rotate!        #=> ["b", "c", "d", "a"]
a                #=> ["b", "c", "d", "a"]
a.rotate!(2)     #=> ["d", "a", "b", "c"]
a.rotate!(-3)    #=> ["a", "b", "c", "d"]
 
               static VALUE
rb_ary_rotate_bang(int argc, VALUE *argv, VALUE ary)
{
    long n = 1;

    switch (argc) {
      case 1: n = NUM2LONG(argv[0]);
      case 0: break;
      default: rb_scan_args(argc, argv, "01", NULL);
    }
    rb_ary_rotate(ary, n);
    return ary;
}
            
sample → obj click to toggle source
sample(random: rng) → obj
sample(n) → new_ary
sample(n, random: rng) → new_ary

Choose a random element or n random elements from the array. The elements are chosen by using random and unique indices into the array in order to ensure that an element doesn’t repeat itself unless the array already contained duplicate elements. If the array is empty the first form returns nil and the second form returns an empty array.

If rng is given, it will be used as the random number generator.

 
               static VALUE
rb_ary_sample(int argc, VALUE *argv, VALUE ary)
{
    VALUE nv, result, *ptr;
    VALUE opts, randgen = rb_cRandom;
    long n, len, i, j, k, idx[10];
    double rnds[numberof(idx)];

    if (OPTHASH_GIVEN_P(opts)) {
        randgen = rb_hash_lookup2(opts, sym_random, randgen);
    }
    ptr = RARRAY_PTR(ary);
    len = RARRAY_LEN(ary);
    if (argc == 0) {
        if (len == 0) return Qnil;
        if (len == 1) {
            i = 0;
        }
        else {
            double x = rb_random_real(randgen);
            if ((len = RARRAY_LEN(ary)) == 0) return Qnil;
            i = (long)(x * len);
        }
        return RARRAY_PTR(ary)[i];
    }
    rb_scan_args(argc, argv, "1", &nv);
    n = NUM2LONG(nv);
    if (n < 0) rb_raise(rb_eArgError, "negative sample number");
    if (n > len) n = len;
    if (n <= numberof(idx)) {
        for (i = 0; i < n; ++i) {
            rnds[i] = rb_random_real(randgen);
        }
    }
    len = RARRAY_LEN(ary);
    ptr = RARRAY_PTR(ary);
    if (n > len) n = len;
    switch (n) {
      case 0:
        return rb_ary_new2(0);
      case 1:
        i = (long)(rnds[0] * len);
        return rb_ary_new4(1, &ptr[i]);
      case 2:
        i = (long)(rnds[0] * len);
        j = (long)(rnds[1] * (len-1));
        if (j >= i) j++;
        return rb_ary_new3(2, ptr[i], ptr[j]);
      case 3:
        i = (long)(rnds[0] * len);
        j = (long)(rnds[1] * (len-1));
        k = (long)(rnds[2] * (len-2));
        {
            long l = j, g = i;
            if (j >= i) l = i, g = ++j;
            if (k >= l && (++k >= g)) ++k;
        }
        return rb_ary_new3(3, ptr[i], ptr[j], ptr[k]);
    }
    if (n <= numberof(idx)) {
        VALUE *ptr_result;
        long sorted[numberof(idx)];
        sorted[0] = idx[0] = (long)(rnds[0] * len);
        for (i=1; i<n; i++) {
            k = (long)(rnds[i] * --len);
            for (j = 0; j < i; ++j) {
                if (k < sorted[j]) break;
                ++k;
            }
            memmove(&sorted[j+1], &sorted[j], sizeof(sorted[0])*(i-j));
            sorted[j] = idx[i] = k;
        }
        result = rb_ary_new2(n);
        ptr_result = RARRAY_PTR(result);
        for (i=0; i<n; i++) {
            ptr_result[i] = ptr[idx[i]];
        }
    }
    else {
        VALUE *ptr_result;
        result = rb_ary_new4(len, ptr);
        RBASIC(result)->klass = 0;
        ptr_result = RARRAY_PTR(result);
        RB_GC_GUARD(ary);
        for (i=0; i<n; i++) {
            j = RAND_UPTO(len-i) + i;
            nv = ptr_result[j];
            ptr_result[j] = ptr_result[i];
            ptr_result[i] = nv;
        }
        RBASIC(result)->klass = rb_cArray;
    }
    ARY_SET_LEN(result, n);

    return result;
}
            
select {|item| block } → new_ary click to toggle source
select → an_enumerator

Invokes the block passing in successive elements from self, returning an array containing those elements for which the block returns a true value (equivalent to Enumerable#select).

If no block is given, an enumerator is returned instead.

a = %w{ a b c d e f }
a.select {|v| v =~ /[aeiou]/}   #=> ["a", "e"]
 
               static VALUE
rb_ary_select(VALUE ary)
{
    VALUE result;
    long i;

    RETURN_ENUMERATOR(ary, 0, 0);
    result = rb_ary_new2(RARRAY_LEN(ary));
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
            rb_ary_push(result, rb_ary_elt(ary, i));
        }
    }
    return result;
}
            
select! {|item| block } → ary or nil click to toggle source
select! → an_enumerator

Invokes the block passing in successive elements from self, deleting elements for which the block returns a false value. It returns self if changes were made, otherwise it returns nil. See also Array#keep_if

If no block is given, an enumerator is returned instead.

 
               static VALUE
rb_ary_select_bang(VALUE ary)
{
    long i1, i2;

    RETURN_ENUMERATOR(ary, 0, 0);
    rb_ary_modify(ary);
    for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
        VALUE v = RARRAY_PTR(ary)[i1];
        if (!RTEST(rb_yield(v))) continue;
        if (i1 != i2) {
            rb_ary_store(ary, i2, v);
        }
        i2++;
    }

    if (RARRAY_LEN(ary) == i2) return Qnil;
    if (i2 < RARRAY_LEN(ary))
        ARY_SET_LEN(ary, i2);
    return ary;
}
            
shift → obj or nil click to toggle source
shift(n) → new_ary

Returns the first element of self and removes it (shifting all other elements down by one). Returns nil if the array is empty.

If a number n is given, returns an array of the first n elements (or less) just like array.slice!(0, n) does.

args = [ "-m", "-q", "filename" ]
args.shift     #=> "-m"
args           #=> ["-q", "filename"]

args = [ "-m", "-q", "filename" ]
args.shift(2)  #=> ["-m", "-q"]
args           #=> ["filename"]
 
               static VALUE
rb_ary_shift_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE result;
    long n;

    if (argc == 0) {
        return rb_ary_shift(ary);
    }

    rb_ary_modify_check(ary);
    result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
    n = RARRAY_LEN(result);
    if (ARY_SHARED_P(ary)) {
        if (ARY_SHARED_NUM(ARY_SHARED(ary)) == 1) {
            rb_mem_clear(RARRAY_PTR(ary), n);
        }
        ARY_INCREASE_PTR(ary, n);
    }
    else {
        MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+n, VALUE, RARRAY_LEN(ary)-n);
    }
    ARY_INCREASE_LEN(ary, -n);

    return result;
}
            
shuffle → new_ary click to toggle source
shuffle(random: rng) → new_ary

Returns a new array with elements of this array shuffled.

a = [ 1, 2, 3 ]           #=> [1, 2, 3]
a.shuffle                 #=> [2, 3, 1]

If rng is given, it will be used as the random number generator.

a.shuffle(random: Random.new(1))  #=> [1, 3, 2]
 
               static VALUE
rb_ary_shuffle(int argc, VALUE *argv, VALUE ary)
{
    ary = rb_ary_dup(ary);
    rb_ary_shuffle_bang(argc, argv, ary);
    return ary;
}
            
shuffle! → ary click to toggle source
shuffle!(random: rng) → ary

Shuffles elements in self in place. If rng is given, it will be used as the random number generator.

 
               static VALUE
rb_ary_shuffle_bang(int argc, VALUE *argv, VALUE ary)
{
    VALUE *ptr, opts, *snap_ptr, randgen = rb_cRandom;
    long i, snap_len;

    if (OPTHASH_GIVEN_P(opts)) {
        randgen = rb_hash_lookup2(opts, sym_random, randgen);
    }
    if (argc > 0) {
        rb_raise(rb_eArgError, "wrong number of arguments (%d for 0)", argc);
    }
    rb_ary_modify(ary);
    i = RARRAY_LEN(ary);
    ptr = RARRAY_PTR(ary);
    snap_len = i;
    snap_ptr = ptr;
    while (i) {
        long j = RAND_UPTO(i);
        VALUE tmp;
        if (snap_len != RARRAY_LEN(ary) || snap_ptr != RARRAY_PTR(ary)) {
            rb_raise(rb_eRuntimeError, "modified during shuffle");
        }
        tmp = ptr[--i];
        ptr[i] = ptr[j];
        ptr[j] = tmp;
    }
    return ary;
}
            
size() click to toggle source
Alias for: length
ary[index] → obj or nil click to toggle source
ary[start, length] → new_ary or nil
ary[range] → new_ary or nil
slice(index) → obj or nil
slice(start, length) → new_ary or nil
slice(range) → new_ary or nil

Element Reference—Returns the element at index, or returns a subarray starting at start and continuing for length elements, or returns a subarray specified by range. Negative indices count backward from the end of the array (-1 is the last element). Returns nil if the index (or starting index) are out of range.

a = [ "a", "b", "c", "d", "e" ]
a[2] +  a[0] + a[1]    #=> "cab"
a[6]                   #=> nil
a[1, 2]                #=> [ "b", "c" ]
a[1..3]                #=> [ "b", "c", "d" ]
a[4..7]                #=> [ "e" ]
a[6..10]               #=> nil
a[-3, 3]               #=> [ "c", "d", "e" ]
# special cases
a[5]                   #=> nil
a[5, 1]                #=> []
a[5..10]               #=> []
 
               VALUE
rb_ary_aref(int argc, VALUE *argv, VALUE ary)
{
    VALUE arg;
    long beg, len;

    if (argc == 2) {
        beg = NUM2LONG(argv[0]);
        len = NUM2LONG(argv[1]);
        if (beg < 0) {
            beg += RARRAY_LEN(ary);
        }
        return rb_ary_subseq(ary, beg, len);
    }
    if (argc != 1) {
        rb_scan_args(argc, argv, "11", 0, 0);
    }
    arg = argv[0];
    /* special case - speeding up */
    if (FIXNUM_P(arg)) {
        return rb_ary_entry(ary, FIX2LONG(arg));
    }
    /* check if idx is Range */
    switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) {
      case Qfalse:
        break;
      case Qnil:
        return Qnil;
      default:
        return rb_ary_subseq(ary, beg, len);
    }
    return rb_ary_entry(ary, NUM2LONG(arg));
}
            
slice!(index) → obj or nil click to toggle source
slice!(start, length) → new_ary or nil
slice!(range) → new_ary or nil

Deletes the element(s) given by an index (optionally with a length) or by a range. Returns the deleted object (or objects), or nil if the index is out of range.

a = [ "a", "b", "c" ]
a.slice!(1)     #=> "b"
a               #=> ["a", "c"]
a.slice!(-1)    #=> "c"
a               #=> ["a"]
a.slice!(100)   #=> nil
a               #=> ["a"]
 
               static VALUE
rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary)
{
    VALUE arg1, arg2;
    long pos, len, orig_len;

    rb_ary_modify_check(ary);
    if (argc == 2) {
        pos = NUM2LONG(argv[0]);
        len = NUM2LONG(argv[1]);
      delete_pos_len:
        if (len < 0) return Qnil;
        orig_len = RARRAY_LEN(ary);
        if (pos < 0) {
            pos += orig_len;
            if (pos < 0) return Qnil;
        }
        else if (orig_len < pos) return Qnil;
        if (orig_len < pos + len) {
            len = orig_len - pos;
        }
        if (len == 0) return rb_ary_new2(0);
        arg2 = rb_ary_new4(len, RARRAY_PTR(ary)+pos);
        RBASIC(arg2)->klass = rb_obj_class(ary);
        rb_ary_splice(ary, pos, len, Qundef);
        return arg2;
    }

    if (argc != 1) {
        /* error report */
        rb_scan_args(argc, argv, "11", NULL, NULL);
    }
    arg1 = argv[0];

    if (!FIXNUM_P(arg1)) {
        switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) {
          case Qtrue:
            /* valid range */
            goto delete_pos_len;
          case Qnil:
            /* invalid range */
            return Qnil;
          default:
            /* not a range */
            break;
        }
    }

    return rb_ary_delete_at(ary, NUM2LONG(arg1));
}
            
sort → new_ary click to toggle source
sort {| a,b | block } → new_ary

Returns a new array created by sorting self. Comparisons for the sort will be done using the <=> operator or using an optional code block. The block implements a comparison between a and b, returning -1, 0, or +1. See also Enumerable#sort_by.

a = [ "d", "a", "e", "c", "b" ]
a.sort                    #=> ["a", "b", "c", "d", "e"]
a.sort {|x,y| y <=> x }   #=> ["e", "d", "c", "b", "a"]
 
               VALUE
rb_ary_sort(VALUE ary)
{
    ary = rb_ary_dup(ary);
    rb_ary_sort_bang(ary);
    return ary;
}
            
sort! → ary click to toggle source
sort! {| a,b | block } → ary

Sorts self. Comparisons for the sort will be done using the <=> operator or using an optional code block. The block implements a comparison between a and b, returning -1, 0, or +1. See also Enumerable#sort_by.

a = [ "d", "a", "e", "c", "b" ]
a.sort!                    #=> ["a", "b", "c", "d", "e"]
a.sort! {|x,y| y <=> x }   #=> ["e", "d", "c", "b", "a"]
 
               VALUE
rb_ary_sort_bang(VALUE ary)
{
    rb_ary_modify(ary);
    assert(!ARY_SHARED_P(ary));
    if (RARRAY_LEN(ary) > 1) {
        VALUE tmp = ary_make_substitution(ary); /* only ary refers tmp */
        struct ary_sort_data data;

        RBASIC(tmp)->klass = 0;
        data.ary = tmp;
        data.opt_methods = 0;
        data.opt_inited = 0;
        ruby_qsort(RARRAY_PTR(tmp), RARRAY_LEN(tmp), sizeof(VALUE),
                   rb_block_given_p()?sort_1:sort_2, &data);

        if (ARY_EMBED_P(tmp)) {
            assert(ARY_EMBED_P(tmp));
            if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */
                rb_ary_unshare(ary);
            }
            FL_SET_EMBED(ary);
            MEMCPY(RARRAY_PTR(ary), ARY_EMBED_PTR(tmp), VALUE, ARY_EMBED_LEN(tmp));
            ARY_SET_LEN(ary, ARY_EMBED_LEN(tmp));
        }
        else {
            assert(!ARY_EMBED_P(tmp));
            if (ARY_HEAP_PTR(ary) == ARY_HEAP_PTR(tmp)) {
                assert(!ARY_EMBED_P(ary));
                FL_UNSET_SHARED(ary);
                ARY_SET_CAPA(ary, ARY_CAPA(tmp));
            }
            else {
                assert(!ARY_SHARED_P(tmp));
                if (ARY_EMBED_P(ary)) {
                    FL_UNSET_EMBED(ary);
                }
                else if (ARY_SHARED_P(ary)) {
                    /* ary might be destructively operated in the given block */
                    rb_ary_unshare(ary);
                }
                else {
                    xfree(ARY_HEAP_PTR(ary));
                }
                ARY_SET_PTR(ary, RARRAY_PTR(tmp));
                ARY_SET_HEAP_LEN(ary, RARRAY_LEN(tmp));
                ARY_SET_CAPA(ary, ARY_CAPA(tmp));
            }
            /* tmp was lost ownership for the ptr */
            FL_UNSET(tmp, FL_FREEZE);
            FL_SET_EMBED(tmp);
            ARY_SET_EMBED_LEN(tmp, 0);
            FL_SET(tmp, FL_FREEZE);
        }
        /* tmp will be GC'ed. */
        RBASIC(tmp)->klass = rb_cArray;
    }
    return ary;
}
            
sort_by! {| obj | block } → ary click to toggle source
sort_by! → an_enumerator

Sorts self in place using a set of keys generated by mapping the values in self through the given block.

If no block is given, an enumerator is returned instead.

 
               static VALUE
rb_ary_sort_by_bang(VALUE ary)
{
    VALUE sorted;

    RETURN_ENUMERATOR(ary, 0, 0);
    rb_ary_modify(ary);
    sorted = rb_block_call(ary, rb_intern("sort_by"), 0, 0, sort_by_i, 0);
    rb_ary_replace(ary, sorted);
    return ary;
}
            
take(n) → new_ary click to toggle source

Returns first n elements from ary.

a = [1, 2, 3, 4, 5, 0]
a.take(3)             #=> [1, 2, 3]
 
               static VALUE
rb_ary_take(VALUE obj, VALUE n)
{
    long len = NUM2LONG(n);
    if (len < 0) {
        rb_raise(rb_eArgError, "attempt to take negative size");
    }
    return rb_ary_subseq(obj, 0, len);
}
            
take_while {|arr| block } → new_ary click to toggle source
take_while → an_enumerator

Passes elements to the block until the block returns nil or false, then stops iterating and returns an array of all prior elements.

If no block is given, an enumerator is returned instead.

a = [1, 2, 3, 4, 5, 0]
a.take_while {|i| i < 3 }   #=> [1, 2]
 
               static VALUE
rb_ary_take_while(VALUE ary)
{
    long i;

    RETURN_ENUMERATOR(ary, 0, 0);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break;
    }
    return rb_ary_take(ary, LONG2FIX(i));
}
            
to_a → ary click to toggle source

Returns self. If called on a subclass of Array, converts the receiver to an Array object.

 
               static VALUE
rb_ary_to_a(VALUE ary)
{
    if (rb_obj_class(ary) != rb_cArray) {
        VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
        rb_ary_replace(dup, ary);
        return dup;
    }
    return ary;
}
            
to_ary → ary click to toggle source

Returns self.

 
               static VALUE
rb_ary_to_ary_m(VALUE ary)
{
    return ary;
}
            
to_s() click to toggle source
Alias for: inspect
transpose → new_ary click to toggle source

Assumes that self is an array of arrays and transposes the rows and columns.

a = [[1,2], [3,4], [5,6]]
a.transpose   #=> [[1, 3, 5], [2, 4, 6]]
 
               static VALUE
rb_ary_transpose(VALUE ary)
{
    long elen = -1, alen, i, j;
    VALUE tmp, result = 0;

    alen = RARRAY_LEN(ary);
    if (alen == 0) return rb_ary_dup(ary);
    for (i=0; i<alen; i++) {
        tmp = to_ary(rb_ary_elt(ary, i));
        if (elen < 0) {                /* first element */
            elen = RARRAY_LEN(tmp);
            result = rb_ary_new2(elen);
            for (j=0; j<elen; j++) {
                rb_ary_store(result, j, rb_ary_new2(alen));
            }
        }
        else if (elen != RARRAY_LEN(tmp)) {
            rb_raise(rb_eIndexError, "element size differs (%ld should be %ld)",
                     RARRAY_LEN(tmp), elen);
        }
        for (j=0; j<elen; j++) {
            rb_ary_store(rb_ary_elt(result, j), i, rb_ary_elt(tmp, j));
        }
    }
    return result;
}
            
uniq → new_ary click to toggle source

Returns a new array by removing duplicate values in self.

a = [ "a", "a", "b", "b", "c" ]
a.uniq   #=> ["a", "b", "c"]
c = [ "a:def", "a:xyz", "b:abc", "b:xyz", "c:jkl" ]
c.uniq {|s| s[/^\w+/]}  #=> [ "a:def", "b:abc", "c:jkl" ]
 
               static VALUE
rb_ary_uniq(VALUE ary)
{
    VALUE hash, uniq, v;
    long i;

    if (RARRAY_LEN(ary) <= 1)
        return rb_ary_dup(ary);
    if (rb_block_given_p()) {
        hash = ary_make_hash_by(ary);
        uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash));
        st_foreach(RHASH_TBL(hash), push_value, uniq);
    }
    else {
        hash = ary_make_hash(ary);
        uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash));
        for (i=0; i<RARRAY_LEN(ary); i++) {
            st_data_t vv = (st_data_t)(v = rb_ary_elt(ary, i));
            if (st_delete(RHASH_TBL(hash), &vv, 0)) {
                rb_ary_push(uniq, v);
            }
        }
    }
    ary_recycle_hash(hash);

    return uniq;
}
            
uniq! → ary or nil click to toggle source

Removes duplicate elements from self. Returns nil if no changes are made (that is, no duplicates are found).

a = [ "a", "a", "b", "b", "c" ]
a.uniq!   #=> ["a", "b", "c"]
b = [ "a", "b", "c" ]
b.uniq!   #=> nil
c = [ "a:def", "a:xyz", "b:abc", "b:xyz", "c:jkl" ]
c.uniq! {|s| s[/^\w+/]}  #=> [ "a:def", "b:abc", "c:jkl" ]
 
               static VALUE
rb_ary_uniq_bang(VALUE ary)
{
    VALUE hash, v;
    long i, j;

    rb_ary_modify_check(ary);
    if (RARRAY_LEN(ary) <= 1)
        return Qnil;
    if (rb_block_given_p()) {
        hash = ary_make_hash_by(ary);
        if (RARRAY_LEN(ary) == (i = RHASH_SIZE(hash))) {
            return Qnil;
        }
        ARY_SET_LEN(ary, 0);
        if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) {
            rb_ary_unshare(ary);
            FL_SET_EMBED(ary);
        }
        ary_resize_capa(ary, i);
        st_foreach(RHASH_TBL(hash), push_value, ary);
    }
    else {
        hash = ary_make_hash(ary);
        if (RARRAY_LEN(ary) == (long)RHASH_SIZE(hash)) {
            return Qnil;
        }
        for (i=j=0; i<RARRAY_LEN(ary); i++) {
            st_data_t vv = (st_data_t)(v = rb_ary_elt(ary, i));
            if (st_delete(RHASH_TBL(hash), &vv, 0)) {
                rb_ary_store(ary, j++, v);
            }
        }
        ARY_SET_LEN(ary, j);
    }
    ary_recycle_hash(hash);

    return ary;
}
            
unshift(obj, ...) → ary click to toggle source

Prepends objects to the front of self, moving other elements upwards.

a = [ "b", "c", "d" ]
a.unshift("a")   #=> ["a", "b", "c", "d"]
a.unshift(1, 2)  #=> [ 1, 2, "a", "b", "c", "d"]
 
               static VALUE
rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary)
{
    long len;

    rb_ary_modify(ary);
    if (argc == 0) return ary;
    if (ARY_CAPA(ary) <= (len = RARRAY_LEN(ary)) + argc) {
        ary_double_capa(ary, len + argc);
    }

    /* sliding items */
    MEMMOVE(RARRAY_PTR(ary) + argc, RARRAY_PTR(ary), VALUE, len);
    MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc);
    ARY_INCREASE_LEN(ary, argc);

    return ary;
}
            
values_at(selector,... ) → new_ary click to toggle source

Returns an array containing the elements in self corresponding to the given selector(s). The selectors may be either integer indices or ranges. See also Array#select.

a = %w{ a b c d e f }
a.values_at(1, 3, 5)
a.values_at(1, 3, 5, 7)
a.values_at(-1, -3, -5, -7)
a.values_at(1..3, 2...5)
 
               static VALUE
rb_ary_values_at(int argc, VALUE *argv, VALUE ary)
{
    return rb_get_values_at(ary, RARRAY_LEN(ary), argc, argv, rb_ary_entry);
}
            
zip(arg, ...) → new_ary click to toggle source
zip(arg, ...) {| arr | block } → nil

Converts any arguments to arrays, then merges elements of self with corresponding elements from each argument. This generates a sequence of self.size n-element arrays, where n is one more that the count of arguments. If the size of any argument is less than enumObj.size, nil values are supplied. If a block is given, it is invoked for each output array, otherwise an array of arrays is returned.

a = [ 4, 5, 6 ]
b = [ 7, 8, 9 ]
[1,2,3].zip(a, b)      #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
[1,2].zip(a,b)         #=> [[1, 4, 7], [2, 5, 8]]
a.zip([1,2],[8])       #=> [[4,1,8], [5,2,nil], [6,nil,nil]]
 
               static VALUE
rb_ary_zip(int argc, VALUE *argv, VALUE ary)
{
    int i, j;
    long len;
    VALUE result = Qnil;

    len = RARRAY_LEN(ary);
    for (i=0; i<argc; i++) {
        argv[i] = take_items(argv[i], len);
    }
    if (!rb_block_given_p()) {
        result = rb_ary_new2(len);
    }

    for (i=0; i<RARRAY_LEN(ary); i++) {
        VALUE tmp = rb_ary_new2(argc+1);

        rb_ary_push(tmp, rb_ary_elt(ary, i));
        for (j=0; j<argc; j++) {
            rb_ary_push(tmp, rb_ary_elt(argv[j], i));
        }
        if (NIL_P(result)) {
            rb_yield(tmp);
        }
        else {
            rb_ary_push(result, tmp);
        }
    }
    return result;
}
            
ary | other_ary → new_ary click to toggle source

Set Union—Returns a new array by joining this array with other_ary, removing duplicates.

[ "a", "b", "c" ] | [ "c", "d", "a" ]
       #=> [ "a", "b", "c", "d" ]
 
               static VALUE
rb_ary_or(VALUE ary1, VALUE ary2)
{
    VALUE hash, ary3, v;
    st_data_t vv;
    long i;

    ary2 = to_ary(ary2);
    ary3 = rb_ary_new2(RARRAY_LEN(ary1)+RARRAY_LEN(ary2));
    hash = ary_add_hash(ary_make_hash(ary1), ary2);

    for (i=0; i<RARRAY_LEN(ary1); i++) {
        vv = (st_data_t)(v = rb_ary_elt(ary1, i));
        if (st_delete(RHASH_TBL(hash), &vv, 0)) {
            rb_ary_push(ary3, v);
        }
    }
    for (i=0; i<RARRAY_LEN(ary2); i++) {
        vv = (st_data_t)(v = rb_ary_elt(ary2, i));
        if (st_delete(RHASH_TBL(hash), &vv, 0)) {
            rb_ary_push(ary3, v);
        }
    }
    ary_recycle_hash(hash);
    return ary3;
}
            

Commenting is here to help enhance the documentation. For example, sample code, or clarification of the documentation.

If you have questions about Ruby or the documentation, please post to one of the Ruby mailing lists. You will get better, faster, help that way.

If you wish to post a correction of the docs, please do so, but also file bug report so that it can be corrected for the next release. Thank you.

blog comments powered by Disqus