A rational number can be represented as a paired integer number; a/b (b>0). Where a is numerator and b is denominator. Integer a equals rational a/1 mathematically.
In ruby, you can create rational object with Rational, #to_r or rationalize method. The return values will be irreducible.
Rational(1) #=> (1/1) Rational(2, 3) #=> (2/3) Rational(4, -6) #=> (-2/3) 3.to_r #=> (3/1)
You can also create rational object from floating-point numbers or strings.
Rational(0.3) #=> (5404319552844595/18014398509481984) Rational('0.3') #=> (3/10) Rational('2/3') #=> (2/3) 0.3.to_r #=> (5404319552844595/18014398509481984) '0.3'.to_r #=> (3/10) '2/3'.to_r #=> (2/3) 0.3.rationalize #=> (3/10)
A rational object is an exact number, which helps you to write program without any rounding errors.
10.times.inject(0){|t,| t + 0.1} #=> 0.9999999999999999 10.times.inject(0){|t,| t + Rational('0.1')} #=> (1/1)
However, when an expression has inexact factor (numerical value or operation), will produce an inexact result.
Rational(10) / 3 #=> (10/3) Rational(10) / 3.0 #=> 3.3333333333333335 Rational(-8) ** Rational(1, 3) #=> (1.0000000000000002+1.7320508075688772i)
Performs multiplication.
For example:
Rational(2, 3) * Rational(2, 3) #=> (4/9) Rational(900) * Rational(1) #=> (900/1) Rational(-2, 9) * Rational(-9, 2) #=> (1/1) Rational(9, 8) * 4 #=> (9/2) Rational(20, 9) * 9.8 #=> 21.77777777777778
static VALUE nurat_mul(VALUE self, VALUE other) { switch (TYPE(other)) { case T_FIXNUM: case T_BIGNUM: { get_dat1(self); return f_muldiv(self, dat->num, dat->den, other, ONE, '*'); } case T_FLOAT: return f_mul(f_to_f(self), other); case T_RATIONAL: { get_dat2(self, other); return f_muldiv(self, adat->num, adat->den, bdat->num, bdat->den, '*'); } default: return rb_num_coerce_bin(self, other, '*'); } }
Performs exponentiation.
For example:
Rational(2) ** Rational(3) #=> (8/1) Rational(10) ** -2 #=> (1/100) Rational(10) ** -2.0 #=> 0.01 Rational(-4) ** Rational(1,2) #=> (1.2246063538223773e-16+2.0i) Rational(1, 2) ** 0 #=> (1/1) Rational(1, 2) ** 0.0 #=> 1.0
static VALUE nurat_expt(VALUE self, VALUE other) { if (k_numeric_p(other) && k_exact_zero_p(other)) return f_rational_new_bang1(CLASS_OF(self), ONE); if (k_rational_p(other)) { get_dat1(other); if (f_one_p(dat->den)) other = dat->num; /* c14n */ } switch (TYPE(other)) { case T_FIXNUM: { VALUE num, den; get_dat1(self); switch (FIX2INT(f_cmp(other, ZERO))) { case 1: num = f_expt(dat->num, other); den = f_expt(dat->den, other); break; case -1: num = f_expt(dat->den, f_negate(other)); den = f_expt(dat->num, f_negate(other)); break; default: num = ONE; den = ONE; break; } return f_rational_new2(CLASS_OF(self), num, den); } case T_BIGNUM: rb_warn("in a**b, b may be too big"); /* fall through */ case T_FLOAT: case T_RATIONAL: return f_expt(f_to_f(self), other); default: return rb_num_coerce_bin(self, other, id_expt); } }
Performs addition.
For example:
Rational(2, 3) + Rational(2, 3) #=> (4/3) Rational(900) + Rational(1) #=> (900/1) Rational(-2, 9) + Rational(-9, 2) #=> (-85/18) Rational(9, 8) + 4 #=> (41/8) Rational(20, 9) + 9.8 #=> 12.022222222222222
static VALUE nurat_add(VALUE self, VALUE other) { switch (TYPE(other)) { case T_FIXNUM: case T_BIGNUM: { get_dat1(self); return f_addsub(self, dat->num, dat->den, other, ONE, '+'); } case T_FLOAT: return f_add(f_to_f(self), other); case T_RATIONAL: { get_dat2(self, other); return f_addsub(self, adat->num, adat->den, bdat->num, bdat->den, '+'); } default: return rb_num_coerce_bin(self, other, '+'); } }
Performs subtraction.
For example:
Rational(2, 3) - Rational(2, 3) #=> (0/1) Rational(900) - Rational(1) #=> (899/1) Rational(-2, 9) - Rational(-9, 2) #=> (77/18) Rational(9, 8) - 4 #=> (23/8) Rational(20, 9) - 9.8 #=> -7.577777777777778
static VALUE nurat_sub(VALUE self, VALUE other) { switch (TYPE(other)) { case T_FIXNUM: case T_BIGNUM: { get_dat1(self); return f_addsub(self, dat->num, dat->den, other, ONE, '-'); } case T_FLOAT: return f_sub(f_to_f(self), other); case T_RATIONAL: { get_dat2(self, other); return f_addsub(self, adat->num, adat->den, bdat->num, bdat->den, '-'); } default: return rb_num_coerce_bin(self, other, '-'); } }
Performs division.
For example:
Rational(2, 3) / Rational(2, 3) #=> (1/1) Rational(900) / Rational(1) #=> (900/1) Rational(-2, 9) / Rational(-9, 2) #=> (4/81) Rational(9, 8) / 4 #=> (9/32) Rational(20, 9) / 9.8 #=> 0.22675736961451246
static VALUE nurat_div(VALUE self, VALUE other) { switch (TYPE(other)) { case T_FIXNUM: case T_BIGNUM: if (f_zero_p(other)) rb_raise_zerodiv(); { get_dat1(self); return f_muldiv(self, dat->num, dat->den, other, ONE, '/'); } case T_FLOAT: { double x = RFLOAT_VALUE(other), den; get_dat1(self); if (isnan(x)) return DBL2NUM(NAN); if (isinf(x)) return INT2FIX(0); if (x != 0.0 && modf(x, &den) == 0.0) { return rb_rational_raw2(dat->num, f_mul(rb_dbl2big(den), dat->den)); } } return rb_funcall(f_to_f(self), '/', 1, other); case T_RATIONAL: if (f_zero_p(other)) rb_raise_zerodiv(); { get_dat2(self, other); if (f_one_p(self)) return f_rational_new_no_reduce2(CLASS_OF(self), bdat->den, bdat->num); return f_muldiv(self, adat->num, adat->den, bdat->num, bdat->den, '/'); } default: return rb_num_coerce_bin(self, other, '/'); } }
Performs comparison and returns -1, 0, or +1.
For example:
Rational(2, 3) <=> Rational(2, 3) #=> 0 Rational(5) <=> 5 #=> 0 Rational(2,3) <=> Rational(1,3) #=> 1 Rational(1,3) <=> 1 #=> -1 Rational(1,3) <=> 0.3 #=> 1
static VALUE nurat_cmp(VALUE self, VALUE other) { switch (TYPE(other)) { case T_FIXNUM: case T_BIGNUM: { get_dat1(self); if (FIXNUM_P(dat->den) && FIX2LONG(dat->den) == 1) return f_cmp(dat->num, other); /* c14n */ return f_cmp(self, f_rational_new_bang1(CLASS_OF(self), other)); } case T_FLOAT: return f_cmp(f_to_f(self), other); case T_RATIONAL: { VALUE num1, num2; get_dat2(self, other); if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) && FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) { num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den)); num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den)); } else { num1 = f_mul(adat->num, bdat->den); num2 = f_mul(bdat->num, adat->den); } return f_cmp(f_sub(num1, num2), ZERO); } default: return rb_num_coerce_cmp(self, other, id_cmp); } }
Returns true if rat equals object numerically.
For example:
Rational(2, 3) == Rational(2, 3) #=> true Rational(5) == 5 #=> true Rational(0) == 0.0 #=> true Rational('1/3') == 0.33 #=> false Rational('1/2') == '1/2' #=> false
static VALUE nurat_eqeq_p(VALUE self, VALUE other) { switch (TYPE(other)) { case T_FIXNUM: case T_BIGNUM: { get_dat1(self); if (f_zero_p(dat->num) && f_zero_p(other)) return Qtrue; if (!FIXNUM_P(dat->den)) return Qfalse; if (FIX2LONG(dat->den) != 1) return Qfalse; if (f_eqeq_p(dat->num, other)) return Qtrue; return Qfalse; } case T_FLOAT: return f_eqeq_p(f_to_f(self), other); case T_RATIONAL: { get_dat2(self, other); if (f_zero_p(adat->num) && f_zero_p(bdat->num)) return Qtrue; return f_boolcast(f_eqeq_p(adat->num, bdat->num) && f_eqeq_p(adat->den, bdat->den)); } default: return f_eqeq_p(other, self); } }
Returns the truncated value (toward positive infinity).
For example:
Rational(3).ceil #=> 3 Rational(2, 3).ceil #=> 1 Rational(-3, 2).ceil #=> -1 decimal - 1 2 3 . 4 5 6 ^ ^ ^ ^ ^ ^ precision -3 -2 -1 0 +1 +2 '%f' % Rational('-123.456').ceil(+1) #=> "-123.400000" '%f' % Rational('-123.456').ceil(-1) #=> "-120.000000"
static VALUE nurat_ceil_n(int argc, VALUE *argv, VALUE self) { return f_round_common(argc, argv, self, nurat_ceil); }
Returns the denominator (always positive).
For example:
Rational(7).denominator #=> 1 Rational(7, 1).denominator #=> 1 Rational(9, -4).denominator #=> 4 Rational(-2, -10).denominator #=> 5 rat.numerator.gcd(rat.denominator) #=> 1
static VALUE nurat_denominator(VALUE self) { get_dat1(self); return dat->den; }
Performs division and returns the value as a float.
For example:
Rational(2, 3).fdiv(1) #=> 0.6666666666666666 Rational(2, 3).fdiv(0.5) #=> 1.3333333333333333 Rational(2).fdiv(3) #=> 0.6666666666666666
static VALUE nurat_fdiv(VALUE self, VALUE other) { if (f_zero_p(other)) return f_div(self, f_to_f(other)); return f_to_f(f_div(self, other)); }
Returns the truncated value (toward negative infinity).
For example:
Rational(3).floor #=> 3 Rational(2, 3).floor #=> 0 Rational(-3, 2).floor #=> -1 decimal - 1 2 3 . 4 5 6 ^ ^ ^ ^ ^ ^ precision -3 -2 -1 0 +1 +2 '%f' % Rational('-123.456').floor(+1) #=> "-123.500000" '%f' % Rational('-123.456').floor(-1) #=> "-130.000000"
static VALUE nurat_floor_n(int argc, VALUE *argv, VALUE self) { return f_round_common(argc, argv, self, nurat_floor); }
Returns the value as a string for inspection.
For example:
Rational(2).inspect #=> "(2/1)" Rational(-8, 6).inspect #=> "(-4/3)" Rational('0.5').inspect #=> "(1/2)"
static VALUE nurat_inspect(VALUE self) { VALUE s; s = rb_usascii_str_new2("("); rb_str_concat(s, f_format(self, f_inspect)); rb_str_cat2(s, ")"); return s; }
Returns the numerator.
For example:
Rational(7).numerator #=> 7 Rational(7, 1).numerator #=> 7 Rational(9, -4).numerator #=> -9 Rational(-2, -10).numerator #=> 1
static VALUE nurat_numerator(VALUE self) { get_dat1(self); return dat->num; }
Performs division.
For example:
Rational(2, 3) / Rational(2, 3) #=> (1/1) Rational(900) / Rational(1) #=> (900/1) Rational(-2, 9) / Rational(-9, 2) #=> (4/81) Rational(9, 8) / 4 #=> (9/32) Rational(20, 9) / 9.8 #=> 0.22675736961451246
static VALUE nurat_div(VALUE self, VALUE other) { switch (TYPE(other)) { case T_FIXNUM: case T_BIGNUM: if (f_zero_p(other)) rb_raise_zerodiv(); { get_dat1(self); return f_muldiv(self, dat->num, dat->den, other, ONE, '/'); } case T_FLOAT: { double x = RFLOAT_VALUE(other), den; get_dat1(self); if (isnan(x)) return DBL2NUM(NAN); if (isinf(x)) return INT2FIX(0); if (x != 0.0 && modf(x, &den) == 0.0) { return rb_rational_raw2(dat->num, f_mul(rb_dbl2big(den), dat->den)); } } return rb_funcall(f_to_f(self), '/', 1, other); case T_RATIONAL: if (f_zero_p(other)) rb_raise_zerodiv(); { get_dat2(self, other); if (f_one_p(self)) return f_rational_new_no_reduce2(CLASS_OF(self), bdat->den, bdat->num); return f_muldiv(self, adat->num, adat->den, bdat->num, bdat->den, '/'); } default: return rb_num_coerce_bin(self, other, '/'); } }
Returns a simpler approximation of the value if an optional argument eps is given (rat-|eps| <= result <= rat+|eps|), self otherwise.
For example:
r = Rational(5033165, 16777216) r.rationalize #=> (5033165/16777216) r.rationalize(Rational('0.01')) #=> (3/10) r.rationalize(Rational('0.1')) #=> (1/3)
static VALUE nurat_rationalize(int argc, VALUE *argv, VALUE self) { VALUE e, a, b, p, q; if (argc == 0) return self; if (f_negative_p(self)) return f_negate(nurat_rationalize(argc, argv, f_abs(self))); rb_scan_args(argc, argv, "01", &e); e = f_abs(e); a = f_sub(self, e); b = f_add(self, e); if (f_eqeq_p(a, b)) return self; nurat_rationalize_internal(a, b, &p, &q); return f_rational_new2(CLASS_OF(self), p, q); }
Returns the truncated value (toward the nearest integer; 0.5 => 1; -0.5 => -1).
For example:
Rational(3).round #=> 3 Rational(2, 3).round #=> 1 Rational(-3, 2).round #=> -2 decimal - 1 2 3 . 4 5 6 ^ ^ ^ ^ ^ ^ precision -3 -2 -1 0 +1 +2 '%f' % Rational('-123.456').round(+1) #=> "-123.500000" '%f' % Rational('-123.456').round(-1) #=> "-120.000000"
static VALUE nurat_round_n(int argc, VALUE *argv, VALUE self) { return f_round_common(argc, argv, self, nurat_round); }
Return the value as a float.
For example:
Rational(2).to_f #=> 2.0 Rational(9, 4).to_f #=> 2.25 Rational(-3, 4).to_f #=> -0.75 Rational(20, 3).to_f #=> 6.666666666666667
static VALUE nurat_to_f(VALUE self) { get_dat1(self); return f_fdiv(dat->num, dat->den); }
Returns the truncated value as an integer.
Equivalent to
rat.truncate.
For example:
Rational(2, 3).to_i #=> 0 Rational(3).to_i #=> 3 Rational(300.6).to_i #=> 300 Rational(98,71).to_i #=> 1 Rational(-30,2).to_i #=> -15
static VALUE nurat_truncate(VALUE self) { get_dat1(self); if (f_negative_p(dat->num)) return f_negate(f_idiv(f_negate(dat->num), dat->den)); return f_idiv(dat->num, dat->den); }
Returns self.
For example:
Rational(2).to_r #=> (2/1) Rational(-8, 6).to_r #=> (-4/3)
static VALUE nurat_to_r(VALUE self) { return self; }
Returns the value as a string.
For example:
Rational(2).to_s #=> "2/1" Rational(-8, 6).to_s #=> "-4/3" Rational('0.5').to_s #=> "1/2"
static VALUE nurat_to_s(VALUE self) { return f_format(self, f_to_s); }
Returns the truncated value (toward zero).
For example:
Rational(3).truncate #=> 3 Rational(2, 3).truncate #=> 0 Rational(-3, 2).truncate #=> -1 decimal - 1 2 3 . 4 5 6 ^ ^ ^ ^ ^ ^ precision -3 -2 -1 0 +1 +2 '%f' % Rational('-123.456').truncate(+1) #=> "-123.400000" '%f' % Rational('-123.456').truncate(-1) #=> "-120.000000"
static VALUE nurat_truncate_n(int argc, VALUE *argv, VALUE self) { return f_round_common(argc, argv, self, nurat_truncate); }
Commenting is here to help enhance the documentation. For example, sample code, or clarification of the documentation.
If you have questions about Ruby or the documentation, please post to one of the Ruby mailing lists. You will get better, faster, help that way.
If you wish to post a correction of the docs, please do so, but also file bug report so that it can be corrected for the next release. Thank you.