Bignum objects hold integers outside the range of Fixnum. Bignum objects are created automatically when integer calculations would otherwise overflow a Fixnum. When a calculation involving Bignum objects returns a result that will fit in a Fixnum, the result is automatically converted.
For the purposes of the bitwise operations and []
, a Bignum is treated as if it were an infinite-length
bitstring with 2’s complement representation.
While Fixnum values are immediate, Bignum objects are not—assignment and parameter passing work with references to objects, not the objects themselves.
Returns big modulo other. See Numeric#divmod for more information.
VALUE rb_big_modulo(VALUE x, VALUE y) { VALUE z; switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; default: return rb_num_coerce_bin(x, y, '%'); } bigdivmod(x, y, 0, &z); return bignorm(z); }
Performs bitwise and
between big and
numeric.
VALUE rb_big_and(VALUE xx, VALUE yy) { volatile VALUE x, y, z; BDIGIT *ds1, *ds2, *zds; long i, l1, l2; char sign; x = xx; y = bit_coerce(yy); if (!RBIGNUM_SIGN(x)) { x = rb_big_clone(x); get2comp(x); } if (FIXNUM_P(y)) { return bigand_int(x, FIX2LONG(y)); } if (!RBIGNUM_SIGN(y)) { y = rb_big_clone(y); get2comp(y); } if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) { l1 = RBIGNUM_LEN(y); l2 = RBIGNUM_LEN(x); ds1 = BDIGITS(y); ds2 = BDIGITS(x); sign = RBIGNUM_SIGN(y); } else { l1 = RBIGNUM_LEN(x); l2 = RBIGNUM_LEN(y); ds1 = BDIGITS(x); ds2 = BDIGITS(y); sign = RBIGNUM_SIGN(x); } z = bignew(l2, RBIGNUM_SIGN(x) || RBIGNUM_SIGN(y)); zds = BDIGITS(z); for (i=0; i<l1; i++) { zds[i] = ds1[i] & ds2[i]; } for (; i<l2; i++) { zds[i] = sign?0:ds2[i]; } if (!RBIGNUM_SIGN(z)) get2comp(z); return bignorm(z); }
Multiplies big and other, returning the result.
VALUE rb_big_mul(VALUE x, VALUE y) { switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; case T_FLOAT: return DBL2NUM(rb_big2dbl(x) * RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '*'); } return bignorm(bigmul0(x, y)); }
Raises big to the exponent power (which may be an integer, float, or anything that will coerce to a number). The result may be a Fixnum, Bignum, or Float
123456789 ** 2 #=> 15241578750190521 123456789 ** 1.2 #=> 5126464716.09932 123456789 ** -2 #=> 6.5610001194102e-17
VALUE rb_big_pow(VALUE x, VALUE y) { double d; SIGNED_VALUE yy; if (y == INT2FIX(0)) return INT2FIX(1); switch (TYPE(y)) { case T_FLOAT: d = RFLOAT_VALUE(y); if ((!RBIGNUM_SIGN(x) && !BIGZEROP(x)) && d != round(d)) return rb_funcall(rb_complex_raw1(x), rb_intern("**"), 1, y); break; case T_BIGNUM: rb_warn("in a**b, b may be too big"); d = rb_big2dbl(y); break; case T_FIXNUM: yy = FIX2LONG(y); if (yy < 0) return rb_funcall(rb_rational_raw1(x), rb_intern("**"), 1, y); else { VALUE z = 0; SIGNED_VALUE mask; const long BIGLEN_LIMIT = 1024*1024 / SIZEOF_BDIGITS; if ((RBIGNUM_LEN(x) > BIGLEN_LIMIT) || (RBIGNUM_LEN(x) > BIGLEN_LIMIT / yy)) { rb_warn("in a**b, b may be too big"); d = (double)yy; break; } for (mask = FIXNUM_MAX + 1; mask; mask >>= 1) { if (z) z = bigsqr(z); if (yy & mask) { z = z ? bigtrunc(bigmul0(z, x)) : x; } } return bignorm(z); } /* NOTREACHED */ break; default: return rb_num_coerce_bin(x, y, rb_intern("**")); } return DBL2NUM(pow(rb_big2dbl(x), d)); }
Adds big and other, returning the result.
VALUE rb_big_plus(VALUE x, VALUE y) { long n; switch (TYPE(y)) { case T_FIXNUM: n = FIX2LONG(y); if ((n > 0) != RBIGNUM_SIGN(x)) { if (n < 0) { n = -n; } return bigsub_int(x, n); } if (n < 0) { n = -n; } return bigadd_int(x, n); case T_BIGNUM: return bignorm(bigadd(x, y, 1)); case T_FLOAT: return DBL2NUM(rb_big2dbl(x) + RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '+'); } }
Subtracts other from big, returning the result.
VALUE rb_big_minus(VALUE x, VALUE y) { long n; switch (TYPE(y)) { case T_FIXNUM: n = FIX2LONG(y); if ((n > 0) != RBIGNUM_SIGN(x)) { if (n < 0) { n = -n; } return bigadd_int(x, n); } if (n < 0) { n = -n; } return bigsub_int(x, n); case T_BIGNUM: return bignorm(bigadd(x, y, 0)); case T_FLOAT: return DBL2NUM(rb_big2dbl(x) - RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '-'); } }
Unary minus (returns an integer whose value is 0-big)
VALUE rb_big_uminus(VALUE x) { VALUE z = rb_big_clone(x); RBIGNUM_SET_SIGN(z, !RBIGNUM_SIGN(x)); return bignorm(z); }
Performs division: the class of the resulting object depends on the class
of numeric
and on the magnitude of the result.
VALUE rb_big_div(VALUE x, VALUE y) { return rb_big_divide(x, y, '/'); }
Returns true
if the value of big
is less than
that of real
.
static VALUE big_lt(VALUE x, VALUE y) { return big_op(x, y, 2); }
Shifts big left numeric positions (right if numeric is negative).
VALUE rb_big_lshift(VALUE x, VALUE y) { long shift; int neg = 0; for (;;) { if (FIXNUM_P(y)) { shift = FIX2LONG(y); if (shift < 0) { neg = 1; shift = -shift; } break; } else if (TYPE(y) == T_BIGNUM) { if (!RBIGNUM_SIGN(y)) { VALUE t = check_shiftdown(y, x); if (!NIL_P(t)) return t; neg = 1; } shift = big2ulong(y, "long", TRUE); break; } y = rb_to_int(y); } x = neg ? big_rshift(x, shift) : big_lshift(x, shift); return bignorm(x); }
Returns true
if the value of big
is less than or
equal to that of real
.
static VALUE big_le(VALUE x, VALUE y) { return big_op(x, y, 3); }
Comparison—Returns -1, 0, or +1 depending on whether big is less
than, equal to, or greater than numeric. This is the basis for the
tests in Comparable
.
VALUE rb_big_cmp(VALUE x, VALUE y) { long xlen = RBIGNUM_LEN(x); BDIGIT *xds, *yds; switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; case T_FLOAT: { double a = RFLOAT_VALUE(y); if (isinf(a)) { if (a > 0.0) return INT2FIX(-1); else return INT2FIX(1); } return rb_dbl_cmp(rb_big2dbl(x), a); } default: return rb_num_coerce_cmp(x, y, rb_intern("<=>")); } if (RBIGNUM_SIGN(x) > RBIGNUM_SIGN(y)) return INT2FIX(1); if (RBIGNUM_SIGN(x) < RBIGNUM_SIGN(y)) return INT2FIX(-1); if (xlen < RBIGNUM_LEN(y)) return (RBIGNUM_SIGN(x)) ? INT2FIX(-1) : INT2FIX(1); if (xlen > RBIGNUM_LEN(y)) return (RBIGNUM_SIGN(x)) ? INT2FIX(1) : INT2FIX(-1); xds = BDIGITS(x); yds = BDIGITS(y); while(xlen-- && (xds[xlen]==yds[xlen])); if (-1 == xlen) return INT2FIX(0); return (xds[xlen] > yds[xlen]) ? (RBIGNUM_SIGN(x) ? INT2FIX(1) : INT2FIX(-1)) : (RBIGNUM_SIGN(x) ? INT2FIX(-1) : INT2FIX(1)); }
Returns true
only if obj has the same value as
big. Contrast this with Bignum#eql?
, which requires
obj to be a Bignum
.
68719476736 == 68719476736.0 #=> true
VALUE rb_big_eq(VALUE x, VALUE y) { switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; case T_FLOAT: { volatile double a, b; a = RFLOAT_VALUE(y); if (isnan(a) || isinf(a)) return Qfalse; b = rb_big2dbl(x); return (a == b)?Qtrue:Qfalse; } default: return rb_equal(y, x); } if (RBIGNUM_SIGN(x) != RBIGNUM_SIGN(y)) return Qfalse; if (RBIGNUM_LEN(x) != RBIGNUM_LEN(y)) return Qfalse; if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM_LEN(y)) != 0) return Qfalse; return Qtrue; }
Returns true
only if obj has the same value as
big. Contrast this with Bignum#eql?
, which requires
obj to be a Bignum
.
68719476736 == 68719476736.0 #=> true
VALUE rb_big_eq(VALUE x, VALUE y) { switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; case T_FLOAT: { volatile double a, b; a = RFLOAT_VALUE(y); if (isnan(a) || isinf(a)) return Qfalse; b = rb_big2dbl(x); return (a == b)?Qtrue:Qfalse; } default: return rb_equal(y, x); } if (RBIGNUM_SIGN(x) != RBIGNUM_SIGN(y)) return Qfalse; if (RBIGNUM_LEN(x) != RBIGNUM_LEN(y)) return Qfalse; if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM_LEN(y)) != 0) return Qfalse; return Qtrue; }
Returns true
if the value of big
is greater than
that of real
.
static VALUE big_gt(VALUE x, VALUE y) { return big_op(x, y, 0); }
Returns true
if the value of big
is greater than
or equal to that of real
.
static VALUE big_ge(VALUE x, VALUE y) { return big_op(x, y, 1); }
Shifts big right numeric positions (left if numeric is negative).
VALUE rb_big_rshift(VALUE x, VALUE y) { long shift; int neg = 0; for (;;) { if (FIXNUM_P(y)) { shift = FIX2LONG(y); if (shift < 0) { neg = 1; shift = -shift; } break; } else if (TYPE(y) == T_BIGNUM) { if (RBIGNUM_SIGN(y)) { VALUE t = check_shiftdown(y, x); if (!NIL_P(t)) return t; } else { neg = 1; } shift = big2ulong(y, "long", TRUE); break; } y = rb_to_int(y); } x = neg ? big_lshift(x, shift) : big_rshift(x, shift); return bignorm(x); }
Bit Reference—Returns the nth bit in the (assumed) binary representation of big, where big is the least significant bit.
a = 9**15 50.downto(0) do |n| print a[n] end
produces:
000101110110100000111000011110010100111100010111001
static VALUE rb_big_aref(VALUE x, VALUE y) { BDIGIT *xds; BDIGIT_DBL num; VALUE shift; long i, s1, s2; if (TYPE(y) == T_BIGNUM) { if (!RBIGNUM_SIGN(y)) return INT2FIX(0); bigtrunc(y); if (RBIGNUM_LEN(y) > DIGSPERLONG) { out_of_range: return RBIGNUM_SIGN(x) ? INT2FIX(0) : INT2FIX(1); } shift = big2ulong(y, "long", FALSE); } else { i = NUM2LONG(y); if (i < 0) return INT2FIX(0); shift = (VALUE)i; } s1 = shift/BITSPERDIG; s2 = shift%BITSPERDIG; if (s1 >= RBIGNUM_LEN(x)) goto out_of_range; if (!RBIGNUM_SIGN(x)) { xds = BDIGITS(x); i = 0; num = 1; while (num += ~xds[i], ++i <= s1) { num = BIGDN(num); } } else { num = BDIGITS(x)[s1]; } if (num & ((BDIGIT_DBL)1<<s2)) return INT2FIX(1); return INT2FIX(0); }
Performs bitwise +exclusive or+ between big and numeric.
VALUE rb_big_xor(VALUE xx, VALUE yy) { volatile VALUE x, y; VALUE z; BDIGIT *ds1, *ds2, *zds; long i, l1, l2; char sign; x = xx; y = bit_coerce(yy); if (!RBIGNUM_SIGN(x)) { x = rb_big_clone(x); get2comp(x); } if (FIXNUM_P(y)) { return bigxor_int(x, FIX2LONG(y)); } if (!RBIGNUM_SIGN(y)) { y = rb_big_clone(y); get2comp(y); } if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) { l1 = RBIGNUM_LEN(y); l2 = RBIGNUM_LEN(x); ds1 = BDIGITS(y); ds2 = BDIGITS(x); sign = RBIGNUM_SIGN(y); } else { l1 = RBIGNUM_LEN(x); l2 = RBIGNUM_LEN(y); ds1 = BDIGITS(x); ds2 = BDIGITS(y); sign = RBIGNUM_SIGN(x); } RBIGNUM_SET_SIGN(x, RBIGNUM_SIGN(x)?1:0); RBIGNUM_SET_SIGN(y, RBIGNUM_SIGN(y)?1:0); z = bignew(l2, !(RBIGNUM_SIGN(x) ^ RBIGNUM_SIGN(y))); zds = BDIGITS(z); for (i=0; i<l1; i++) { zds[i] = ds1[i] ^ ds2[i]; } for (; i<l2; i++) { zds[i] = sign?ds2[i]:~ds2[i]; } if (!RBIGNUM_SIGN(z)) get2comp(z); return bignorm(z); }
Returns the absolute value of big.
-1234567890987654321.abs #=> 1234567890987654321
static VALUE rb_big_abs(VALUE x) { if (!RBIGNUM_SIGN(x)) { x = rb_big_clone(x); RBIGNUM_SET_SIGN(x, 1); } return x; }
MISSING: documentation
static VALUE rb_big_coerce(VALUE x, VALUE y) { if (FIXNUM_P(y)) { return rb_assoc_new(rb_int2big(FIX2LONG(y)), x); } else if (TYPE(y) == T_BIGNUM) { return rb_assoc_new(y, x); } else { rb_raise(rb_eTypeError, "can't coerce %s to Bignum", rb_obj_classname(y)); } /* not reached */ return Qnil; }
Performs integer division: returns integer value.
VALUE rb_big_idiv(VALUE x, VALUE y) { return rb_big_divide(x, y, rb_intern("div")); }
See Numeric#divmod
.
VALUE rb_big_divmod(VALUE x, VALUE y) { VALUE div, mod; switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; default: return rb_num_coerce_bin(x, y, rb_intern("divmod")); } bigdivmod(x, y, &div, &mod); return rb_assoc_new(bignorm(div), bignorm(mod)); }
Returns true
only if obj is a Bignum
with the same value as big. Contrast this with
Bignum#==
, which performs type conversions.
68719476736.eql?(68719476736.0) #=> false
static VALUE rb_big_eql(VALUE x, VALUE y) { if (TYPE(y) != T_BIGNUM) return Qfalse; if (RBIGNUM_SIGN(x) != RBIGNUM_SIGN(y)) return Qfalse; if (RBIGNUM_LEN(x) != RBIGNUM_LEN(y)) return Qfalse; if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM_LEN(y)) != 0) return Qfalse; return Qtrue; }
Returns true
if big is an even number.
static VALUE rb_big_even_p(VALUE num) { if (BDIGITS(num)[0] & 1) { return Qfalse; } return Qtrue; }
Returns the floating point result of dividing big by numeric.
-1234567890987654321.fdiv(13731) #=> -89910996357705.5 -1234567890987654321.fdiv(13731.24) #=> -89909424858035.7
VALUE rb_big_fdiv(VALUE x, VALUE y) { double dx, dy; dx = big2dbl(x); switch (TYPE(y)) { case T_FIXNUM: dy = (double)FIX2LONG(y); if (isinf(dx)) return big_fdiv(x, y); break; case T_BIGNUM: dy = rb_big2dbl(y); if (isinf(dx) || isinf(dy)) return big_fdiv(x, y); break; case T_FLOAT: dy = RFLOAT_VALUE(y); if (isnan(dy)) return y; if (isinf(dx)) return big_fdiv(x, y); break; default: return rb_num_coerce_bin(x, y, rb_intern("fdiv")); } return DBL2NUM(dx / dy); }
Compute a hash based on the value of big.
static VALUE rb_big_hash(VALUE x) { st_index_t hash; hash = rb_memhash(BDIGITS(x), sizeof(BDIGIT)*RBIGNUM_LEN(x)) ^ RBIGNUM_SIGN(x); return INT2FIX(hash); }
Returns the absolute value of big.
-1234567890987654321.abs #=> 1234567890987654321
static VALUE rb_big_abs(VALUE x) { if (!RBIGNUM_SIGN(x)) { x = rb_big_clone(x); RBIGNUM_SET_SIGN(x, 1); } return x; }
Returns big modulo other. See Numeric#divmod for more information.
VALUE rb_big_modulo(VALUE x, VALUE y) { VALUE z; switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; default: return rb_num_coerce_bin(x, y, '%'); } bigdivmod(x, y, 0, &z); return bignorm(z); }
Returns true
if big is an odd number.
static VALUE rb_big_odd_p(VALUE num) { if (BDIGITS(num)[0] & 1) { return Qtrue; } return Qfalse; }
Returns the remainder after dividing big by numeric.
-1234567890987654321.remainder(13731) #=> -6966 -1234567890987654321.remainder(13731.24) #=> -9906.22531493148
static VALUE rb_big_remainder(VALUE x, VALUE y) { VALUE z; switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; default: return rb_num_coerce_bin(x, y, rb_intern("remainder")); } bigdivrem(x, y, 0, &z); return bignorm(z); }
Returns the number of bytes in the machine representation of big.
(256**10 - 1).size #=> 12 (256**20 - 1).size #=> 20 (256**40 - 1).size #=> 40
static VALUE rb_big_size(VALUE big) { return LONG2FIX(RBIGNUM_LEN(big)*SIZEOF_BDIGITS); }
Converts big to a Float
. If big doesn’t fit
in a Float
, the result is infinity.
static VALUE rb_big_to_f(VALUE x) { return DBL2NUM(rb_big2dbl(x)); }
Returns a string containing the representation of big radix base (2 through 36).
12345654321.to_s #=> "12345654321" 12345654321.to_s(2) #=> "1011011111110110111011110000110001" 12345654321.to_s(8) #=> "133766736061" 12345654321.to_s(16) #=> "2dfdbbc31" 78546939656932.to_s(36) #=> "rubyrules"
static VALUE rb_big_to_s(int argc, VALUE *argv, VALUE x) { int base; if (argc == 0) base = 10; else { VALUE b; rb_scan_args(argc, argv, "01", &b); base = NUM2INT(b); } return rb_big2str(x, base); }
Performs bitwise or
between big and numeric.
VALUE rb_big_or(VALUE xx, VALUE yy) { volatile VALUE x, y, z; BDIGIT *ds1, *ds2, *zds; long i, l1, l2; char sign; x = xx; y = bit_coerce(yy); if (!RBIGNUM_SIGN(x)) { x = rb_big_clone(x); get2comp(x); } if (FIXNUM_P(y)) { return bigor_int(x, FIX2LONG(y)); } if (!RBIGNUM_SIGN(y)) { y = rb_big_clone(y); get2comp(y); } if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) { l1 = RBIGNUM_LEN(y); l2 = RBIGNUM_LEN(x); ds1 = BDIGITS(y); ds2 = BDIGITS(x); sign = RBIGNUM_SIGN(y); } else { l1 = RBIGNUM_LEN(x); l2 = RBIGNUM_LEN(y); ds1 = BDIGITS(x); ds2 = BDIGITS(y); sign = RBIGNUM_SIGN(x); } z = bignew(l2, RBIGNUM_SIGN(x) && RBIGNUM_SIGN(y)); zds = BDIGITS(z); for (i=0; i<l1; i++) { zds[i] = ds1[i] | ds2[i]; } for (; i<l2; i++) { zds[i] = sign?ds2[i]:(BDIGIT)(BIGRAD-1); } if (!RBIGNUM_SIGN(z)) get2comp(z); return bignorm(z); }
Inverts the bits in big. As Bignums are conceptually infinite length, the result acts as if it had an infinite number of one bits to the left. In hex representations, this is displayed as two periods to the left of the digits.
sprintf("%X", ~0x1122334455) #=> "..FEEDDCCBBAA"
static VALUE rb_big_neg(VALUE x) { VALUE z = rb_big_clone(x); BDIGIT *ds; long i; if (!RBIGNUM_SIGN(x)) get2comp(z); ds = BDIGITS(z); i = RBIGNUM_LEN(x); if (!i) return INT2FIX(~(SIGNED_VALUE)0); while (i--) { ds[i] = ~ds[i]; } RBIGNUM_SET_SIGN(z, !RBIGNUM_SIGN(z)); if (RBIGNUM_SIGN(x)) get2comp(z); return bignorm(z); }
Commenting is here to help enhance the documentation. For example, sample code, or clarification of the documentation.
If you have questions about Ruby or the documentation, please post to one of the Ruby mailing lists. You will get better, faster, help that way.
If you wish to post a correction of the docs, please do so, but also file bug report so that it can be corrected for the next release. Thank you.